Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Hiển thị các bài đăng có nhãn Laplace. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn Laplace. Hiển thị tất cả bài đăng

Thứ Sáu, 27 tháng 9, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 5 - PHẦN 4 .


   

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 5 -


PHẦN 4 . 



Các phương pháp giải hệ thống phương trình vi phân tuyến tính .

-Phương pháp ma trận .
-Phương pháp toán tử     .
-Phương pháp biến đổi Laplace  .


 

Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

25/09/2013 .



****************************************************************************Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.







Các phương pháp giải hệ thống phương trình vi phân tuyến tính .
3. Phương pháp biến đổi Laplace .
+Xét hệ thống

                   y(t)'  =  A.y(t)  +  h(t)   (1)


Với A = [ aij ] , ( i,j = 1,2,...,n ) ; h(t)  = ( h1(t)  h2(t)  ... hn(t) ) trong đó hàm hk(t
k = 1,2,...,n )  liên tục trên miền cho trước .
+Khi  h(t) = 0   (1)  có dạng thuần nhất .

                   y(t)'  =  A.y(t)         (2)



Trong Chương 5 - Phần 3  chúng ta đã xét đến phương pháp toán tử , tìm nghiệm thuần nhất và nghiệm riêng cho dạng (1) .
+Phần sau đây ta khảo sát phương pháp biến đổi Laplace giải hệ thống phương trình vi phân tuyến tính không thuần nhất có dạng 

  y(t)'  =  A(t).y(t)  +  h(t)   (3)

+Các bạn có thể xem lại lý thuyết phép biến đổi Laplace và Laplace ngược ở Chương 4 - Phần 3 . 1 và 2 . Ví dụ minh họa cho phương pháp này được trình bày ở 3.2 . 
3.1  Nội dung tổng quát .
+Nói chung phương pháp biến đổi Laplace cho (1) gần giống như cách giải ở 3.2  . Các bước cụ thể như sau :
Bước 1 .  Áp phép biến đổi Laplace vào 2 vế của các phương trình trong hệ (1) đưa về hệ đại số các ảnh  Y(sj) = L{yj(t)}, j = 1,2,...,n .
Bước 2 .  Tìm nghiệm đại số  Y(sj) bằng phương pháp Cramer  .
Bước 3 . Áp phép biến đổi ngược vào Y(sj)   ta tìm lại được hàm gốc yj(t) , j = 1,2,...,n .


3.2  Một số công thức thông dụng .
+Phép biến đổi Laplace .
Hàm gốc f(t) có biến thực t qua phép biến đổi Laplace thành ảnh F(s) có biến là số thực .   
Bảng Laplace  .

Thứ Ba, 17 tháng 9, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 5 - PHẦN 3 .


   

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 5 -


PHẦN 3 . 



Các phương pháp giải hệ thống phương trình vi phân tuyến tính .

-Phương pháp ma trận .
-Phương pháp toán tử     .
-Phương pháp biến đổi Laplace  .


 

Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

09/09/2013 .



****************************************************************************Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.



 
Các phương pháp giải hệ thống phương trình vi phân tuyến tính .
2. Phương pháp toán tử .
+Hệ thống phương trình tuyến tính hệ số hằng có dạng 

                   y(t)'  =  A.y(t)  +  h(t)   (1)


Với A là ma trận các hằng số thực  aij , ( i,j = 1,2,...,n ) ; h(t)  là vector cột ( h1(t)  h2(t)  ... hn(t) ) gồm các hàm hk(t
k = 1,2,...,n )  liên tục trên miền cho trước .
+Nếu  h(t) = 0   (1) thành hệ phương trình vi phân tuyến tính thuần nhất hệ số hằng .

                   y(t)'  =  A.y(t)         (2)



Trong Chương 5 - Phần 2  chúng ta đã xét đến phương pháp ma trận , tìm nghiệm thuần nhất và nghiệm riêng cho dạng (1) .
+Trong mục này ta khảo sát cách giải hệ thống phương trình vi phân tuyến tính không thuần nhất có dạng 

  y(t)'  =  A(t).y(t)  +  h(t)   (3)


bằng phương pháp toán tử .
2.1 Nghiệm thuần nhất .
+Cách tìm nghiệm thuần nhất không giống như Chương 5 - Phần 2 -1 - 1.1 , Đối với dạng (1) hoặc (2) biểu thức nghiệm thuần nhất có được là nhờ vào phương trình đặc trưng của (1) :  | A - mI |  = 0  . Nghiệm đặc trưng có thể là dạng thực - rời , phức , thực - bội , thực - phức , từ đó tìm được vector đặc trưng vk(t)  tương ứng .
+ Xét hệ thống phương trình vi phân tuyến tính không thuần nhất có dạng 
y(t)'  =  A(t).y(t)  +  h(t)   (3)
 nghiệm thuần nhất được tìm bằng phương pháp toán tử với các bước sau đây .
Bước 1 . Tìm dạng toán tử của hệ (1) , gọi  s(D)  là ma trận toán tử tương ứng . Tính định thức det[s(D)] . 
Bước 2 . Thay D bằng m , xét phương trình  s(m) = 0 , nghiệm  của phương trình này chính là nghiệm đặc trưng của hệ .  
Ví dụ 1 . ( Thực - rời ) Giải hệ 
Thay D bằng m , nghiệm phương trình đặc trưng  s(m) = 0  cũng chính là nghiệm của det[s(D)] = 0 . 


Ví dụ 2 . ( Phức ) Giải hệ  



2.2 Nghiệm riêng .
2.2.1 Nhắc lại về toán tử vi phân .
Xem lại Chương 4 - Phần 2 . 1.2.2 các công thức toán tử vi phân ngược .
* Các công thức quan trọng .

Thứ Ba, 27 tháng 8, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 5 - PHẦN 2 .


   

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 5 -


PHẦN 2 . 



Các phương pháp giải hệ thống phương trình vi phân tuyến tính .

-Phương pháp ma trận .
-Phương pháp toán tử     .
-Phương pháp biến đổi Laplace  .


 

Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

20/08/2013 .



****************************************************************************Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.




Các phương pháp giải hệ thống phương trình vi phân tuyến tính .
1. Phương pháp ma trận .
+Như đã trình bày ở Chương 5-Phần 1 , hệ thống phương trình tuyến tính hệ số hằng có dạng 

                   y(t)'  =  A.y(t)  +  h(t)   (1)

Với  A là ma trận các hằng số thực  aij , ( i,j = 1,2,...,n )  và h(t)  là vector cột ( h1(t)  h2(t)  ... hn(t) ) gồm các hàm hk(t
k = 1,2,...,n )  liên tục trên miền D cho trước .
+Khi  h(t) = 0   ta có hệ phương trình vi phân tuyến tính thuần nhất hệ số hằng .

                   y(t)'  =  A.y(t)         (2)

Trong phần này chúng ta sẽ khảo sát các phương pháp giải cho dạng (1) .
1.1 Nghiệm thuần nhất .
Nghiệm thuần nhất yTN của hệ (1) là lời giải của (2) .
Cách tìm nghiệm thuần nhất .
Bước 1 . Tìm nghiệm của phương trình đặc trưng 
| A - mI |  = 0 .  
Đây là phương trình đại số bậc n theo ẩn đặc trưng m .  
+Nghiệm của phương trình này gọi là nghiệm đặc trưng mk , k = 1, 2 ...  của hệ . 
Bước 2 . Tìm vector đặc trưng ký hiệu là vk(ttương ứng với nghiệm mk   bằng cách giải phương trình 
                        Avk(t) =mk . vk(t).
+Các trường hợp của trị đặc trưng gồm :
a. Thực -rời .
 +Các mk  , k = 1,2,..., n là thực - rời có hệ n vector đặc trưng tương ứng vk(t)  là độc lập tuyến tính .  Hệ nghiệm của (2) có dạng  

                   uk(t) = exp(mk t).vk(t) 

Ví dụ 1 . 
b. Phức .
 Trị đặc trưng phức  mk = a + ib   với vector đặc trưng tương ứng là vk(t)  thì  a - ib  cũng là trị đặc trưng của hệ . Hai nghiệm thực độc lập tuyến tính của hệ có dạng 

                   uk1(t) =Re{ exp(mk t).vk(t)} = 
      exp(at).[Re{vk(t)}cosbt - Im{vk(t)}sinbt]

                   uk2(t) = Im{exp(mk t).vk(t)} =
      exp(at).[Re{vk(t)}sinbt + Im{vk(t)}cosbt]

Ví dụ 2 . 
c. Thực - bội .
 Hệ có một trị đặc trưng m   là thực - bội cấp p và  mj  là trị đặc trưng thực - rời , j = 1,2,..., h với vector đặc trưng tương ứng là vj(t)  . Để tìm vector đặc trưng vj(t) ( j = 2,3,..., ) ta giải phương trình ma trận 
( A - mI ) vvj-1(t)  .  Nghiệm của hệ được biểu diễn bởi 
             


Ví dụ 3 . 

Khi đó 
d. Thực - phức .
 Hệ có một số trị đặc trưng mi , i = 1,2 ,..., k   là phức và  mj  là trị đặc trưng thực - rời , j = 1,2,..., h với vector đặc trưng tương ứng là vj(t)  . Nghiệm của hệ được biểu diễn bởi tổ hợp tuyến tính dạng a.  và  b ( hoặc  c.  tùy theo các dạng của trị đặc trưng ) . 
Ví dụ 4 .
1.2 Nghiệm riêng .




Xem tiếp 

http://cohtran-toan-don-gian.blogspot.com/2013/08/gioi-thieu-ve-phuong-trinh-vi-phan_28.html


Trần hồng Cơ .
09/09/2013 .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.
 -------------------------------------------------------------------------------------------

 Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic.
 Pure mathematics is, in its way, the poetry of logical ideas.
 Albert Einstein .

Thứ Sáu, 28 tháng 6, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 4- PHẦN 3 .





   


GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 4-


PHẦN 3 . 





Phép biến đổi Laplace .
Phép biến đổi ngược Laplace .
Giải phương trình vi phân bằng phép biến đổi Laplace .
Bài tập thực hành .  







Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

14/05/2013 .


****************************************************************************

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.




1. Phép biến đổi Laplace .
Phép biến đổi Laplace là một trong số những phép biến đổi tích phân quan trọng nhất áp dụng cho việc giải các phương trình vi phân tuyến tính . Nhờ phép biến đổi Laplace ta có thể đưa phương trình vi phân tuyến tính cấp cao hệ số hằng về một phương trình đại số , đặc biệt hơn nữa nó rất hữu dụng khi tìm nghiệm cho các phương trình vi phân tuyến tính có vế phải là những hàm xung , hàm trơn từng khúc hoặc hàm gián đoạn .  Trong phần này chúng ta sẽ tìm hiểu về phép biến đổi Laplace , các tính chất và ứng dụng cho việc giải phương trình vi phân tuyến tính cấp cao .
1.1 Định nghĩa - ký hiệu .
Cho hàm số f(t)  xác định với mọi t > 0 , phép biến đổi tích phân 
Tích phân trong ký hiệu trên hiểu theo nghĩa suy rộng , 

1.1.1  Hàm gốc - định lý cơ bản .
a. Hàm gốc . 
Cho f(t) là hàm với biến thực t , ta nói f(t) là hàm gốc nếu :
( i )  f(t) liên tục từng đoạn khi t  ³  0
( ii )  " t > 0  , $ M > 0 , so  ³  0  : 
| f(t) |  £  M exp(sot )   so  gọi là chỉ số tăng .
( iii )  f(t)  =  0  khi  t  <  0 . 
 Định lý sau trong trường hợp tổng quát đúng với biến phức  p = s + is  .


b. Định lý cơ bản . 
  Cho 

Ví dụ 1 .
Tìm ảnh của các hàm sau 


Lời giải .



1.1.2  Các tính chất - định lý Mellin .

a. Tính chất . 
(i) Tuyến tính . 
Cho f(t) , g(t) là 2 hàm gốc ,  A , B là 2 hằng số thực ( hoặc phức )  

(ii) Đồng dạng .
Cho f(t) là hàm gốc ,  l   là hằng số thực dương

(iii) Dời ảnh .
Cho f(t) là hàm gốc , z là số phức tùy ý 

(iv)  Trễ .
Cho f(t) là hàm gốc 


b. Định lý Mellin . 
  Cho f(t) là hàm gốc có chỉ số tăng so  và F(p) là ảnh của nó tại mọi điểm f(t) liên tục , ta có 




Định lý Mellin cho phép ta tìm được hàm gốc  f(t) dựa trên ảnh F(p) của nó qua phép biến đổi Laplace . Đây chính là cơ sở của phép tính Laplace ngược tìm hàm gốc sau khi đã thực hiện các tính toán trên hàm ảnh F(p) .




1.2  Bảng công thức Laplace - thực hành .
1.2.1  Bảng công thức Laplace .
Dưới đây là bảng công thức Laplace áp dụng cho hàm gốc có biến thực t và biến của ảnh là số thực .   
Bảng Laplace  .

Hàm hyperbolic và hàm Gamma .
Hàm Dirac .

1.2.2  Thực hành .
Ví dụ 2 .

Dựa vào bảng Laplace tìm ảnh của các hàm gốc sau
 Lời giải .





Các bạn dùng các công thức bảng Laplace , kết hợp với Maple tìm ảnh của các hàm gốc e. và f.  còn lại trong ví dụ 2.  trên .
Xem bảng Laplace 

http://www.slideshare.net/cohtran/laplace1-8merged


XEM TIẾP 

http://cohtran-toan-don-gian.blogspot.com/2013/05/gioi-thieu-ve-phuong-trinh-vi-phan.html




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.
------------------------------------------------------------------------------------------- 
Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic. 
Pure mathematics is, in its way, the poetry of logical ideas.
 Albert Einstein .


*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran