VẬT LÝ TỔNG QUAN Chương 1. CƠ HỌC . 1.1 ĐỘNG HỌC .
1.1.6 Vật thể rơi
Gia tốc do trọng lực
Trong phần 1.1.4 và 1.1.5 trước đây chúng ta đã tìm hiểu về gia tốc đồng thời đưa ra các phương trình chuyển động đều . Một trường hợp đáng lưu ý trong chuyển động có gia tốc là hiện tượng rơi tự do .
Bạn hãy khảo sát một đối tượng mang gia tốc bằng một thí nghiệm sau .
Nhặt một vật gì đó : viên sỏi hay quả bóng tròn với bàn tay của bạn và thả nó xuống đất. Khi thả vật này từ bàn tay của bạn, tốc độ ban đầu của nó là 0. Trên đường rơi xuống tốc độ của nó tăng dần lên . Thời gian rơi càng rơi lâu tốc độ của vật càng nhanh hơn . Điều này chỉ cho ta thấy vật thể rơi có gia tốc .
Nhưng gia tốc thì nhiều ý nghĩa hơn là chỉ có tăng tốc độ . Hãy giữ cùng vật thể này trong tay và tung nó lên theo chiều thẳng đứng vào không trung . Trên đường tung lên tốc độ của vật sẽ giảm dần cho đến khi nó dừng lại và đảo ngược hướng. Tốc độ khi giảm dần đi cũng được coi là có gia tốc.
Nhưng gia tốc thì cũng đã như nói ở phần trên , nó mang nhiều ý nghĩa hơn là chỉ có giảm tốc độ . Chúng ta sẽ xét đến hiện tượng vật thể của bạn được ném theo chiều ngang và để ý xem vận tốc ngang của nó dần dần trở thành vận tốc dọc. Vì gia tốc là mức độ thay đổi của vận tốc theo thời gian và vận tốc là một đại lượng vector nên sự thay đổi theo hướng này cũng được coi là gia tốc.
Trong mỗi ví dụ đã xét đến ở trên gia tốc đều là kết quả của lực hấp dẫn. Vật thể của bạn đã có gia tốc bởi vì lực hấp dẫn đã kéo nó xuống đất . Ngay cả các đối tượng khi được tung lên cũng sẽ rơi xuống - và nó bắt đầu rơi vào phút nó rời khỏi bàn tay của bạn . Đây là gia tốc do trọng lực - còn gọi là gia tốc trọng trường ( được ký hiệu bằng chữ g - nghiêng) .
Nhưng các yếu tố nào ảnh hưởng đến gia tốc trọng trường ? Nếu bạn đưa ra câu hỏi này cho một người tiêu biểu nào đó , họ rất có thể sẽ nói là "trọng lượng" bởi đó thực sự có nghĩa là "khối lượng" ( chúng ta sẽ bàn nhiều hơn về điều này sau) . Rất dễ lập luận rằng : các vật nặng rơi nhanh và các đối tượng nhẹ rơi chậm hơn . Mặc dù điều này có vẻ đúng khi kiểm tra lần đầu tiên, nhưng nó vẫn không trả lời được câu hỏi . "Các yếu tố nào ảnh hưởng đến gia tốc trọng trường ? " Khối lượng không ảnh hưởng đến gia tốc trọng trường theo bất kỳ cách đo lường khả dĩ nào . Hai đại lượng này độc lập với nhau.
Vật thể nhẹ tăng tốc chậm hơn so với các vật nặng chỉ khi có các lực khác cùng tác động với trọng lực . Khi điều này xảy ra, một đối tượng có thể rơi xuống, nhưng nó không phải là rơi tự do. Sự rơi tự do xảy ra bất cứ khi nào một đối tượng chỉ duy nhất chịu tác động của trọng lực .
Các thí nghiệm về sự rơi tự do
Hãy quay về quá khứ một chút. Trong thế giới phương Tây trước thế kỷ XVI, người ta thường cho rằng gia tốc của một vật thể rơi sẽ tỉ lệ với khối lượng của nó - Ví dụ một đối tượng nặng 10 kg đã được dự kiến rằng sẽ tăng tốc nhanh hơn mười lần so với một đối tượng nặng 1 kg . Triết gia Hy Lạp cổ đại Aristotle (384-322 TCN), cũng đã đưa ra quy tắc này trong những gì ông đã viết có lẽ là cuốn sách đầu tiên về cơ học . Đó là một công trình vô cùng phổ biến trong số các học giả và trải qua nhiều thế kỷ nó đã được xem là những lý luận kinh điển .
Giáo điều vật lý này của Aristotle cuối cùng đã được nhà khoa học Ý Galileo Galilei (1564-1642) đưa ra thử nghiệm. Không giống như mọi nhà vật lý thời điểm đó, Galileo đã thực sự cố gắng để xác minh lý thuyết của riêng mình thông qua thực nghiệm và quan sát một cách cẩn thận. Sau đó, ông kết hợp kết quả của các thí nghiệm với phân tích toán học theo một phương pháp được xem là hoàn toàn mới mẻ vào thời điểm đó, nhưng bây giờ được công nhận là cách thức thực hiện nghiên cứu khoa học . Chỉ riêng đối với việc phát minh ra phương pháp này, Galileo nói chung được coi là nhà khoa học đầu tiên trên thế giới.
Trong thí nghiệm về sự rơi , Galileo thả hai vật có khối lượng khác nhau từ Tháp nghiêng Pisa. Hoàn toàn trái ngược với những lời dạy của Aristotle trước kia , hai vật thể này đều chạm mặt đất hầu như cùng một lúc. Với tốc độ mà tại đó sự rơi như vậy xảy ra, chúng ta có thể nghi ngờ rằng Galileo làm sao đã có thể trích ra được nhiều thông tin từ thí nghiệm này. Thực ra hầu hết các quan sát của ông về vật rơi là hiện tượng các vật thể lăn xuống dốc. Sự lăn theo một độ dốc đó đã được làm chậm xuống đến thời điểm mà Galileo có thể đo khoảng thời gian bằng đồng hồ nước và mạch tim của mình . Thí nghiệm này được thực hiện lặp đi lặp lại rất nhiều lần cho đến khi đạt đến , theo ông viết , " mức chính xác khá chuẩn mà độ lệch giữa hai quan sát không bao giờ vượt quá một phần mười của một nhịp tim " .
Với kết quả như vậy, chắc bạn nghĩ rằng các trường đại học của châu Âu sẽ ban cho Galileo vinh dự cao nhất của họ, nhưng tiếc thay trường hợp đó đã không xẩy ra . Các giáo sư lúc ấy thật sự kinh hoàng với các kết quả thu được bằng các phương pháp tương đối thô sơ của Galileo , thậm chí còn đi xa hơn vậy họ từ chối thừa nhận rằng có ai đó có thể nhìn thấy thí nghiệm này bằng mắt của mình.
Trong một động thái mà bất kỳ người nào có tư duy cũng sẽ tìm thấy những sự vô lý trong giáo điều Aristotle , nhưng phương pháp của Galileo kiểm soát các quan sát thực nghiệm lúc ấy lại được xem là thấp hơn lý trí thuần túy. Hãy tưởng tượng rằng ở vào thời kỳ đó như sau : Nếu bạn có thể nói rằng chim đại bàng sống dưới đáy đại dương và miễn là bạn đã trình bày một luận cứ tốt hơn so với bất kỳ người nào , nó sẽ được chấp nhận như một thực tế trái ngược với những quan sát của hầu hết mọi người sáng mắt khác trên hành tinh này ! Lý luận kinh điển thuần túy của Aristotle đã chà đạp trên quan sát thực nghiệm của Galileo .
Galileo gọi tên phương pháp của mình là "mới" và đã viết cuốn sách " Bài giảng về Hai khoa học mới " trong đó ông đã sử dụng sự kết hợp của các quan sát thực nghiệm và lý luận toán học để giải thích những các hiện tượng vật lý như chuyển động một chiều với gia tốc hằng , gia tốc trọng trường, đặc trưng của vật phóng , tốc độ ánh sáng, bản chất vô cùng, tính chất vật lý của âm nhạc, và sức bền vật liệu.
Từ những kết quả thực nghiệm về sự rơi , Galileo đưa ra kết luận của ông về gia tốc do trọng lực rằng : " ... trong một môi trường hoàn toàn không có sức đề kháng của vật thể tất cả sẽ rơi với cùng một tốc độ ". Đó là một phát biểu rất quan trọng trong nghiên cứu sự rơi tự do và cũng là sự mở đầu cho vật lý thực nghiệm hậu Galileo vẫn còn nguyên giá trị cho khoa học đương đại .
Tiếp sau sự kiện này nhà khoa học người Anh Issac Newton (1642- 1727) đầu tiên nghiên cứu sự rơi và ảnh hưởng của không khí lên các vật thể rơi . Trong thí nghiệm Newton dùng một ống thuỷ tinh kín trong có chứa hòn bi chì và một cái lông chim . Khi trong ống chứa không khí thì viên bi rơi nhanh hơn cái lông chim. Nhưng khi hút hết không khí trong ống ra, hai vật trên lại rơi nhanh như nhau.
Hình dưới đây mô tả thí nghiệm Newton về sự rơi trong chân không .
Từ các thí nghiệm của Galileo và Newton chúng ta có thể đưa ra kết luận về sự rơi tự do như sau :
-Nếu loại bỏ được ảnh hưởng của không khí và của các tác nhân khác ( như điện trường , từ trường , sóng bức xạ ... ) thì mọi vật rơi nhanh như nhau. Sự rơi của các vật trong trường hợp này gọi là sự rơi tự do.
Các thí nghiệm này được lặp lại trên mặt trăng bởi các phi hành gia Apollo 15 với hai vật thể rơi là cái lông chim và chiếc búa - được ghi lại trong videoclip dưới đây .
Giá trị của gia tốc trọng trường
Galileo tiến hành nhiều phép đo liên quan đến gia tốc trọng trường nhưng chưa một lần tính toán giá trị của nó (hoặc nếu ông đã làm thì chúng ta cũng vẫn chưa bao giờ nhìn thấy số liệu đó được công bố trong bất cứ báo cáo nào ). Thay vào đó, ông tuyên bố phát hiện của mình như là một tập hợp các mối quan hệ tỷ lệ và hình học . Mô tả của ông về tốc độ không đổi cần đến một định nghĩa, bốn tiên đề, và sáu định lý . Tất cả những mối quan hệ có thể được viết như là phương trình duy nhất $ \bar{v} = Δ s / Δ t $ theo ký hiệu hiện đại. Các ký hiệu có thể chứa nhiều thông tin như một số câu trong văn bản khi nó tạo thành một mệnh đề toán học , đó là lý do tại sao chúng được sử dụng rộng rãi để mô tả hiện tượng tự nhiên .
Gia tốc do trọng lực g là gia tốc thực nghiệm của một đối tượng trong trạng rơi tự do trên bề mặt của Trái đất với giả thiết ma sát không khí có thể được bỏ qua. Nó có giá trị xấp xỉ $ 9.80 m / s^2$ , mặc dù số liệu này có thể thay đổi theo độ cao và vị trí. Có nhiều cách để xác định giá trị của gia tốc trọng trường g .
1. Giá trị của g có thể thu được từ lý thuyết bằng cách áp dụng định luật vạn vật hấp dẫn của Newton để tìm lực giữa Trái đất và một đối tượng ở bề mặt của nó , được phát biểu như sau
$F=G.\frac{m_{1}m_{2}}{r_{12}^2}$
Trong đó $m_{1},m_{2}$ là khối lượng của 2 vật thể , $r_{12}$ là khoảng cách nối tâm giữa 2 vật thể , $G$ là hằng số hấp dẫn vũ trụ có giá trị $6,673 × 10^{-11} Nm^2 / kg^2$
Nếu $m_{1},m_{2}$ tương ứng là khối lượng của trái đất và vật thể trên mặt đất , $r_{12}$ là bán kính trái đất , $m_{1}=5.97219.10^{24}$ (kg) , $r_{12} = 6.37.10^{6}$ (m)
khi đó lực hấp dẫn
$F=m_{2}[G.\frac{m_{1}}{r_{12}^2}]= m_{2}.g$
Ta thu được $g = G.\frac{m_{1}}{r_{12}^2}$
Đơn vị của gia tốc trọng trường g là $m/s^2$ , tuy nhiên trong một số trường hợp người ta cũng sử dụng các đơn vị khác như Gal $(cm/s^2)$ , $ft/s^2$ .
2. Giá trị của g có thể thu được từ lý thuyết bằng cách áp dụng phương trình chuyển động thứ hai và lập bảng thống kê kết quả thực nghiệm
Từ $x(t) = x_{0} +v_{0}.\Delta t + ½ .a. \Delta t^2.$ với $t_{0} = 0$ thì $\Delta t = t-0 =t$
Khi đó $x(t) = x_{0} +v_{0}.t + ½ .a. t^2.$
Tại thời điểm $t=0$ thì $x_{0}=0 , v_{0}=0$ , đặt $a = -g$ và thay vào phương trình trên ta có
$h-1/2.gt^2=0$ hay $g=2h/t^2$
Bằng cách chụp ảnh hoạt nghiệm người ta có thể ghi lại hiện tượng rơi của vật thể dưới tác dụng trọng lực và tính toán giá trị của gia tốc trọng trường g . Phương pháp chụp ảnh hoạt nghiệm được mô tả trong clip dưới đây
*Mô tả phương pháp .
Thả rơi một viên bi trắng trước một bảng đen có vạch đặt thẳng đứng trong một phòng tối có gắn máy ảnh chụp lại các vị trí của bi trong suốt thời gian rơi. Với những khoảng thời gian bằng nhau , máy ảnh sẽ chụp lại ảnh viên bi được chiếu sáng và ghi lại vị trí trên bảng đen .
*Kết quả thực nghiệm .
Máy chụp thu được ảnh của viên bi trắng ở những vị trí tương ứng với những khoảng thời gian bằng nhau , từ đó ta có được số liệu về khoảng cách rơi và tính được giá trị của gia tốc trọng trường g ( xem hình động)
Như đã trình bày ở trên , $g=2h/t^2$ nên giá trị tương đối của g là $9.8m/s^2$ . Các bạn có thể tham khảo bảng số liệu thời gian , vận tốc và khoảng cách rơi trích từ nguồn http://www.engineeringtoolbox.com/accelaration-gravity-d_340.html
Với các số liệu trong bảng này giá trị của gia tốc trọng trường $g = 9,8 m / s^2$ hoặc trong các đơn vị khác SI là $g = 35.3 kph / s = 21.9 mph / s = 32.2 feet / s^2$
Cũng cần lưu ý rằng ngay cả trên trái đất , giá trị g này thay đổi theo vĩ độ và độ cao (sẽ được thảo luận trong chương sau). Gia tốc do trọng lực ở các địa cực thì lớn hơn ở xích đạo và ở mực nước biển thì lớn hơn trên đỉnh núi Everest . Ngoài ra cũng có những sự thay đổi về giá trị g địa phương phụ thuộc vào địa chất , $g = 9.8 m / s^2$ chỉ đơn thuần là một giá trị trung bình thuận tiện cho việc tính toán trên toàn bộ bề mặt của trái đất. Giá trị này cũng chính xác ( đến hai chữ số ) đáng kể ở độ cao mà tại đó các máy bay thương mại thường bay qua ( khoảng 18 km, 29.000 feet, hoặc 5.5 dặm).
Để tìm giá trị của gia tốc trọng trường ở một vị trí trên trái đất người ta thường dùng công thức sau
$g=g_{45}-1/2.(g_{cực}-g_{xích đạo}).cos(2 \pi.\lambda /180)$
Trong đó
$g_{45}= 9.806 m (32.17 ft) / s^2$
$g_{cực}= 9.832 m (32.26 ft) / s^2$
$g_{xích đạo}= 9.780 m (32.09 ft) / s^2$
$\lambda$ là vĩ độ , giữa −90 và 90 độ
Bảng sau cho biết các giá trị gia tốc trọng trường đo được ở một số địa điểm . Để tìm các giá trị g ở vị trí khác nhau ta có thể sử dụng widget trực tuyến WA dưới đây . Nhập tên thành phố , tên quốc gia vào ô Location và nhấn ' Get g '
VẬT LÝ TỔNG QUAN Chương 1. CƠ HỌC . 1.1 ĐỘNG HỌC .
1.1.5 Phương trình chuyển động một chiều
Gia tốc hằng
Nội dung của phần này nói về phương trình chuyển động một chiều với tính chất đặc trưng là có gia tốc hằng ( còn gọi là chuyển động đều ) .Các phương trình chuyển động này chỉ có giá trị khi gia tốc là không đổi và chuyển động vật thể được giới hạn trên một đường thẳng , mặc dù điều này hoàn toàn lý tưởng và có tính chất phi thực tế . Chúng ta đang sống trong không gian ba chiều chuyển động nên thật là chính xác khi phát biểu rằng : không bao giờ có đối tượng nào đã chuyển động chỉ theo một đường thẳng với gia tốc không đổi ở bất cứ nơi nào đó trong vũ trụ vào bất cứ thời điểm nào từ quá khứ , hiện tại và ngay cả đến tương lai -
Như vậy những vấn đề được đưa ra trong phần này có cần thiết không ? Thật ra trong nhiều trường hợp, rất hữu ích khi giả định rằng một đối tượng đã hoặc sẽ chuyển động dọc theo một con đường thẳng nào đó ( một cách cơ bản ) và với một gia tốc nào đó là gần như không đổi. Điều đó có nghĩa là , bất kỳ độ lệch nào ra khỏi chuyển động lý tưởng này đều có thể được bỏ qua . Chuyển động dọc theo một con đường cong cũng có thể xem là một chiều một cách hiệu quả , nếu chỉ có một bậc tự do cho các đối tượng liên quan.
Một con đường có thể xoắn lượn theo mọi hướng, nhưng những chiếc xe lái xe trên đó chỉ có một bậc tự do- tự do lái xe theo một hướng hoặc hướng ngược lại. Điều này không phải là không tương đồng với chuyển động giới hạn trên một đường thẳng. Việc xấp xỉ tình huống thực tế với các mô hình dựa trên các tình huống lý tưởng là phương thức thường được thực hiện trong vật lý . Cũng cần lưu ý rằng với các kỹ thuật xấp xỉ hữu ích như vậy chúng ta sẽ sử dụng nó nhiều lần hơn nữa cho các phần sau này .
Mục tiêu của chúng ta trong phần này là thu được những phương trình mới có thể được sử dụng để mô tả chuyển động của một đối tượng theo ba biến động học của nó: vận tốc, chuyển vị, và thời gian. Các biến này có thể ghép từng cặp : vận tốc-thời gian, dịch chuyển-thời gian và vận tốc-dịch chuyển , và cũng theo thứ tự đó , chúng ta sẽ gọi là phương trình thứ nhất , thứ hai và thứ ba của chuyển động .
Với chuyển động đang xét trên một đường thẳng, ký hiệu x sẽ được dùng để chỉ về dịch chuyển và dấu + hay - sẽ quy định về hướng (những đại lượng dương chỉ theo hướng + x trong khi đại lượng âm chỉ theo hướng - x ). Do các định luật vật lý là đẳng hướng ; nghĩa là, chúng độc lập với cách định hướng của hệ tọa độ , nên việc chọn hướng nào để phù hợp là tùy ý , điều này không quan trọng.
Phương trình chuyển động thứ nhất : vận tốc-thời gian
Mối quan hệ giữa vận tốc và thời gian là một trong những quan hệ đơn giản trong quá trình chuyển động thẳng gia tốc hằng ( chuyển động thẳng đều ) . Gia tốc không đổi kéo theo của sự thay đổi đều của vận tốc.
Bắt đầu từ định nghĩa của gia tốc, ta tìm vận tốc v là hàm số theo biến thời gian t .
$a= \frac{\Delta v}{\Delta t} = \frac{v-v_{0}}{\Delta t}$
Ta thu được $v= v_{0}+a.\Delta t$ [ phương trình thứ nhất ]
Ký hiệu $v_{0}$ được gọi là vận tốc ban đầucủa đối tượng chuyển động .
Dạng rút gọn :
Nếu $t_{0}=0 $ thì phương trình thứ nhất có dạng
$v= v_{0}+a. t$ hay $v= u +a. t$ với $u=v_{0}$
Nhưng khái niệm về vận tốc ban đầu có vẻ không được rõ lắm . Thật là ngây thơ khi xét đến vận tốc đầu của trường hợp một thiên thạch di chuyển trong vũ trụ . Vận tốc ban đầu của nó là bao nhiêu ? Và nếu $v_{0}$ là vận tốc đầu tiên thì bài toán đặt ra trước khi nó bắt đầu lại càng khó khăn . Ta có thể nói gì về vận tốc của một thiên thạch khi mới phát sinh ? Không có cách nào để trả lời câu hỏi này.
Một định nghĩa tốt hơn về vận tốc ban đầu mà chúng ta có thể đưa ra là vận tốc mà một đối tượng di chuyển có được khi nó bắt đầu trở nên quan trọng trong một vấn đề nào đó . Nếu cho rằng thiên thạch được phát hiện trong không gian và vấn đề là đã xác định quỹ đạo của nó, thì vận tốc ban đầu sẽ là vận tốc tại thời điểm nó được quan sát thấy. Nhưng nếu vấn đề là để xác định vận tốc của nó vào các tác động, thì vận tốc ban đầu của nó nhiều khả năng sẽ là tốc độ nó có khi nó đi vào bầu khí quyển của trái đất. Trong trường hợp này, câu trả lời cho "vận tốc ban đầu là gì?" là "Nó phụ thuộc khi xem xét ". Điều này hóa ra lại là câu trả lời cho rất nhiều câu hỏi.
Ký hiệu $v$ là vận tốc tại thời điểm sau vận tốc ban đầu một khoảng thời gian $Δ t$ . Nó thường được gọi là vận tốc cuối nhưng điều này không làm cho nó thành "vận tốc cuối cùng" của một đối tượng chuyển động . Lấy trường hợp của thiên thạch mà ta đã nói đến ở trên . Vận tốc gì sẽ được thể hiện bằng các ký hiệu $v$ ? Nếu bạn đã từng chú ý, thì nên hình dung trước những câu trả lời : Đó cũng là sự phụ thuộc. $v$ có thể là vận tốc của thiên thạch khi nó đi qua mặt trăng, khi thiên thạch đi vào bầu khí quyển của trái đất, hoặc là khi nó va chạm bề mặt trái đất. $v$ cũng có thể là vận tốc của thiên thạch khi nó nằm ở dưới đáy của một miệng núi lửa . Nhưng $v$ có phải là vận tốc cuối cùng hay không ? Đây cũng là một vấn đề tùy thuộc vào người quan sát .
Thành phần cuối của phương trình này $a. Δ t$ là sự thay đổi của vận tốc từ giá trị ban đầu. Gia tốc $a$ chỉ ra mức độ thay đổi của vận tốc và $Δ t$ là khoảng thời gian kể từ khi đối tượng đã có vận tốc ban đầu của nó $v _{0}$ . Mức độ này nhân với thời gian bằng với sự thay đổi. Vì vậy, nếu một đối tượng đã được đẩy mạnh ở mức $a (m / s ^2)$ , sau $Δ t (s)$ nó sẽ được di chuyển $a. Δ t ( m / s)$ nhanh hơn so với ban đầu. Nếu nó bắt đầu với vận tốc $v_{0}( m / s)$ , vận tốc của nó sau $Δ t (s)$ tăng tốc sẽ là ...
$v_{0}( m / s)$ + $a. Δ t ( m / s)$ = $v ( m / s)$
Quan hệ giữa vận tốc và thời gian được biểu diễn qua phương trình thứ nhất rút gọn
$v= u +a. t$ hoặc biểu đồ vận tốc-thời gian . Việc đọc thông tin từ các biểu đồ này để biết được đặc tính chuyển động và tính toán các yếu tố vật lý là điều rất cần thiết .
Biểu đồ trên đây mô tả quan hệ vận tốc-thời gian chỉ rõ trạng thái tăng , giảm tốc và không gia tốc . Một ví dụ nhỏ như sau : trên biểu đồ ABCDEFGH , bạn hãy chỉ ra những đoạn nào chỉ về :
- Tăng tốc , giảm tốc và không gia tốc .
- Thời gian tăng tốc .
- Vận tốc lúc 3s , 7s , 9s .
- Vận tốc cuối là bao nhiêu ?
Phương trình chuyển động thứ hai : dịch chuyển-thời gian
Dịch chuyển của một đối tượng chuyển động tỷ lệ thuận với cả vận tốc và thời gian. Di chuyển nhanh hơn - vận tốc lớn hơn ( hoặc di chuyển lâu hơn-thời gian nhiều hơn ) thì sẽ đi xa hơn . Gia tốc kết hợp hai tình huống đơn giản này. Bắt đầu từ định nghĩa của vận tốc
$\bar{v}=\frac{\Delta x}{\Delta t}=\frac{x-x_{0}}{\Delta t}$
Vậy $x-x_{0}=\bar{v}.\Delta t$ hay $x = x_{0} + \bar{v}.\Delta t$
Khi gia tốc là không đổi, vận tốc sẽ thay đổi đều từ giá trị ban đầu đến giá trị cuối cùng của nó và vận tốc trung bình sẽ là.
$\bar{v} = ½ .( v + v_{0} )$[ vận tốc trung bình ]
Mặt khác từ phương trình chuyển động thứ nhất $v= v_{0}+a. \Delta t$
Thay vào vận tốc trung bình ta sẽ có
$\bar{v} = ½ .( v_{0}+a. \Delta t + v_{0} ) = v_{0} + ½. a. \Delta t $ Công thức dịch chuyển $x = x_{0} + \bar{v}.\Delta t$ thành
$x = x_{0} +(v_{0} + ½ .a. \Delta t).\Delta t$
Hay
$x = x_{0} +v_{0}.\Delta t + ½ .a. \Delta t^2.$ [ phương trình thứ hai ]
Trong đó $ x_{0}$ là dịch chuyển ban đầu
Dạng rút gọn :
Nếu $t_{0}=0 , x_{0}=0 $ và $u=v_{0}$ thì phương trình thứ hai có dạng
$x = u. t + ½ .a. t^2.$ ( tính theo vận tốc đầu u )
$x = v. t - ½ .a. t^2.$ ( tính theo vận tốc sau v )
$x = (u+v).t /2$
Mặc dù những ký hiệu vận tốc trong hai phương trình có thể trông khác nhau, nhưng chúng thực sự biểu diễn cho cùng một đại lượng. Trường hợp đặc biệt , nếu không có gia tốc, thì vận tốc là hằng , có nghĩa là vận tốc ban đầu , vận tốc cuối bằng với vận tốc trung bình . Thành phần chứa gia tốc trong phương trình thứ nhất và thứ hai là một sự điều chỉnh đối với các phương trình có vận tốc hằng một đại lượng bổ sung mô tả thực nghiệm là vận tốc thay đổi. Gia tốc dương sẽ làm tăng dịch chuyển và ngược lại gia tốc âm sẽ làm giảm dịch chuyển .
Tương tự mối quan hệ giữa dịch chuyển và thời gian được biểu diễn qua phương trình thứ hai rút gọn
$x = u. t + ½ .a. t^2.$ ( tính theo vận tốc đầu u )
$x = v. t - ½ .a. t^2.$ ( tính theo vận tốc sau v )
$x = (u+v).t /2$
hoặc biểu đồ vận tốc-thời gian .
Biểu đồ trên đây mô tả quan hệ dịch chuyển-thời gian chỉ rõ sự tăng giảm hoặc không dịch chuyển của đối tượng được quan sát . Một ví dụ nhỏ như sau : trên biểu đồ ABCDE , bạn hãy cho biết những thông tin :
- Dịch chuyển của đối tượng trên đoạn AB , BC , CD , DE .
- Dịch chuyển của đối tượng trên đoạn AC , BD , AD , BE .
- Vận tốc trung bình trong 1 phút , 3phút , 4 phút , 5 phút .
- Vận tốc trung bình trên đoạn AC , AD , BC , BD .
- Thời gian nghỉ của đối tượng .
- Trên đoạn nào đối tượng có chuyển động ngược chiều .
- Trên đoạn nào đối tượng có tốc độ lớn nhất , nhỏ nhất .
Phương trình chuyển động thứ ba : vận tóc-dịch chuyển
Hai phương trình chuyển động đầu tiên mô tả một biến động học như là một hàm của thời gian. Về bản chất chúng ta cần lưu ý các quan hệ sau
- Vận tốc tỷ lệ thuận với thời gian khi gia tốc là hằng số $v= v_{0}+a.\Delta t$ .
- Dịch chuyển tỷ lệ thuận với bình phương thời gian khi gia tốc là hằng số $x = x_{0} +v_{0}.\Delta t + ½ .a. \Delta t^2.$ .
Trong phần tiếp theo chúng ta sẽ xây dựng một mối quan hệ giữa dịch chuyển và vận tốc . Có thể phát biểu rằng :
- Dịch chuyển tỷ lệ thuận với bình phương vận tốc khi gia tốc là hằng số .
Để thực hiện điều này ta kết hợp hai phương trình đầu tiên với nhau bằng cách khử đi đại lượng thời gian $\Delta t$. Từ phương trình chuyển động thứ nhất $v= v_{0}+a.\Delta t$ tìm được
$\Delta t =( v - v_{0})/a$ . thay vào phương trình chuyển động thứ hai , ta sẽ có
$x = x_{0} +v_{0}.( v - v_{0})/a + ½ .a. ( v - v_{0})^2/a^2$ .
hay $2.a.(x - x_{0}) = 2.v_{0}.( v - v_{0})+ ( v - v_{0})^2$
Rút gọn vế phải đẳng thức trên
$2.a.(x - x_{0}) = v^2 - v_{0}^2$ [ phương trình thứ ba ]
Dạng rút gọn :
Nếu $t_{0}=0 , x_{0}=0 $ và $u=v_{0}$ thì phương trình thứ ba có dạng
$2.a.x = v^2 - u^2$
hay $v^2 = u^2 + 2.a.x$
Thiết lập phương trình chuyển động từ phép tính vi tích phân
Nhớ chiều thu mưa trên phố . Trần hồng Cơ
28/09/2012
Mưa- Thùy Chi, M4U
Chiều nay trên phố chợt có cơn mưa bay
Giọt mưa vội vã nhẹ rơi mắt người
Mưa có vui như em và anh
Và mưa vẫn thế nhẹ lắm khi bên anh
Vì mưa cũng biết, từ trong tim này
Mưa với anh tới sao ngọt ngào
Lắng nghe mưa thầm hát
Từng giọt thấm ướt vai em
Mà lòng thấy ấm bên anh
Mỗi lúc bên nhau dưới mưa nồng nàn
Có chăng là một thoáng
Một lần hát khẽ bên em
Rằng trọn cuộc đời này sẽ mãi
Chẳng một lần cách xa nhau
ĐK:
Mưa vẫn thế khi mãi bên nhau
Mưa vẫn hát trên tóc em dịu dàng
Mưa khóc lạnh lùng
Khi buồn và nhớ thương anh rất nhiều
Mưa có biết đợi chờ nhớ mong
Mưa có thấy vòng tay đón em mỗi lần
Mưa có trên làn môi em run có nhau trong chiều mưa
Mình tay trong tay
VẾT MƯA
Sáng tác: Vũ Cát Tường
Cơn mưa, đã xoá hết những ngày yêu qua
Chỉ còn mình anh ngu ngơ, mong cho cơn mưa
Tan trong yêu thương không vội vã
Mưa ngoan, giấu hết những phút thẫn thờ này
Thương em đi giữa đêm lạnh
Khoảng trời một mình
Bỏ lại tình mình theo làn mây
Tìm về ngày yêu ấy
Cũng trong chiều mưa này
Mình đã gặp nhau, lạnh bờ vai
Nhưng tim vẫn cười
Giờ vẫn chiều mưa ấy
Em nép trong vòng tay ai?
Anh chỉ lặng im,
Đôi hàng mi nhẹ run cho tim anh bật khóc
Chorus:
Đã qua rồi, qua khoảnh khắc đôi mình
Nói tiếng yêu ngập ngừng,
Rồi nhẹ nhàng đặt lên môi hôn
Cho anh quên đi lạnh giá
Vỡ tan rồi, anh chẳng nói nên lời
Mưa rơi xé tan bóng hình
Vì giờ này em quay đi
Buông tay anh trong chiều giá lạnh
Bridge:
K h cơn mưa cuốn hết nỗi đau ấy
Anh sẽ quên, những yêu thương
Anh viết riêng cho em
Khi, cầu vồng lên sau cơn bão giông
Anh sẽ đi qua yêu thương,
Không còn vấn vương...
Cơn mưa tình yêu
Người yêu ơi cỏ mềm đã héo khô
Mặt hồ lá xác xơ những con đường vắng sương mờ
Từng bước chân cuốn đi mùa thu xa lắm
Để nỗi buồn cứ thế đến bao giờ?
Và cơn mưa ngoài trời đêm gió lạnh
Giật mình nhớ tới anh hãy chờ em anh nhé
Và hãy cho nhau sát lại nụ hôn như bất ngờ
Ngọt ngào như phố tình yêu anh ngàn lần hơn nữa.
ĐK:
Một phút anh ngẩn ngơ, một phút em thầm mơ
Đừng vội làm cơn mưa giăng kín trong lòng em
Để trái tim ngù quên, để nỗi đau triền miên
Từng gịot buồn đánh rơi trên hàng mi ướt mềm
Thổn thức ta nhìn nhau, hẹn ước cho ngày sau
Trọn đời mình bên nhau nhé anh, tình yêu
Vì chính em mà thôi, vì yêu anh mất rồi
Sớm mai dành cho nhau tia nắng đầu tiên rạng ngời.
***
Mưa xa dần hàng cây
Hạt mưa mơn man giây phút này
Ánh sao đưa ta về bên nhau................ ..
br />
------------------------------------------------------------------------------------------- Người có học biết mình ngu dốt.
The learned man knows that he is ignorant. Victor Hugo.
VẬT LÝ TỔNG QUAN Chương 1. CƠ HỌC . 1.1 ĐỘNG HỌC .
1.1.4 Gia tốc
Khái niệm
Khi vận tốc của một đối tượng thay đổi ta nói là đối tượng đó được chuyển tốc. Gia tốc là mức độ thay đổi của vận tốc theo thời gian. Những ví dụ thường thấy nhất ở các cuộc đua xe thể thao F1 . Khi vượt qua những chặng cuối các vận động viên bắt đầu tăng tốc để chạm đích đến . Ví dụ này minh họa sự tăng tốc vì nó thường được hiểu rõ , nhưng gia tốc trong vật lý có ý nghĩa rộng hơn so với sự việc tốc độ chỉ tăng lên .
Bất kỳ sự thay đổi vận tốc của một đối tượng như
- tăng tốc độ
- giảm tốc độ
- thay đổi hướng chuyển động
sẽ cho một kết quả gia tốc . Thực vậy , một sự thay đổi hướng chuyển động sẽ sinh ra gia tốc ngay cả khi đối tượng di chuyển không thực sự tăng tốc hoặc giảm tốc . Đó là bởi vì gia tốc phụ thuộc vào sự thay đổi vận tốc và vận tốc là một đại lượng vector - có cường độ và hướng. Như vậy, một quả táo rơi xuống , một chiếc xe dừng lại tại chốt đèn giao thông , một hành tinh quay xung quanh quỹ đạo đều sinh ra gia tốc .
Giống như vận tốc, có hai loại gia tốc: Gia tốc trung bình và gia tốc tức thời .
Gia tốc trung bình được xác định qua một khoảng thời gian khá dài $[t_{0},t]$. Vận tốc đầu khoảng thời gian này tại $t_{0}$ được gọi là vận tốc ban đầu , ký hiệu $\mathbf{v}_{0}$ , và vận tốc ở cuối khoảng được gọi là vận tốc cuối , ký hiệu $\mathbf{v}$ . Gia tốc trung bình là kết quả tính từ hai phép đo vận tốc trong khoảng thời gian :
Gia tốc tức thời được đo trong một khoảng thời gian rất ngắn , vô cùng nhỏ , nghĩa là khi $\Delta t \rightarrow 0$
$\mathbf{a}=\lim_{\Delta t \rightarrow 0}\frac{\Delta \mathbf{v}}{\Delta t}$
wxMaxima 0.8.5
-
I have released wxMaxima version 0.8.5. There are no major changes in this
release. One of the cool things added are two new translations (Greek an
Japanes...
The Day in Photos – November 5, 2019
-
[image: Hindu women worship the Sun god in the polluted waters of the river
Yamuna during the Hindu religious festival of Chatth Puja in New Delhi,
India, ...
Bài tập B24.Tích phân học toán 12.docx
-
Để có thêm nguồn tư liệu cho HS học tập thi HK 2023 MÔN TOÁN, ÔN TẬP TRONG
LÚC HỌC TOÁN TRONG LỚP, EBOOKTOAN SƯU TẬP CÁC FILE TOÁN DOCX ĐỂ PHỤC VỤ CÁC
TH...
VERBATIM, Verbatim
-
By Erin McKean, editor of VERBATIM. VERBATIM: The Language Quarterly began
as a simple six-page pamphlet in 1974, a project launched by lexicographer
Laure...
The Orbit of Kepler 16b
-
[image: The Orbit of Kepler 16b]NASA's Kepler space telescope recently made
the news by finding a planet that orbits a double-star system, a situation
that...
Convert Vector to diagonal Matrix
-
I am looking for a more eligent way to convert a Vector to a Diagonal
Matrix.
>
restart
>
>
>
with(LinearAlgebra):
>
>
V:=Vecto...
Find All Wolfram News in One Place—The Wolfram Blog
-
This is the final post here at the Wolfram|Alpha Blog. Approximately six
and a half years ago our launch team started the Wolfram|Alpha blog just
prior to ...