Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Hiển thị các bài đăng có nhãn Hình học hyperbolic. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn Hình học hyperbolic. Hiển thị tất cả bài đăng

Thứ Ba, 29 tháng 5, 2012

Câu chuyện toán học .

Câu chuyện toán học



Phim hay: Câu chuyện toán học
Cập nhật lúc :4:27 PM, 30/08/2010
The story of Maths - "Câu chuyện toán học" là bộ phim dài 4 tập của BBC. Phim đưa người xem qua những chặng đường lịch sử của sự phát triển toán học, từ Ai Cập cổ đại đến châu Âu ngày nay...

Toán học là nền tảng cơ bản có ở mọi nơi của mọi thứ diệu kỳ trong cuộc sống hàng ngày, từ những DVD cùng đầu máy, máy tính mà bạn xem và chia sẻ. Những phần cơ bản của nó đã có từ hàng ngàn năm trước, khi mà con người còn chưa khám phá những điều phức tạp như sau này.

Tiến sĩ Marcus du Sautoy - Oxford, một cộng tác viên của BBC, sẽ cho chúng ta hiểu thêm về toán học qua bốn tập phim có tiêu đề là: "Câu chuyện toán học"

Tiến sĩ Marcus du Sautoy - Oxford một cộng tác viên của BBC trong bộ phim The story of Maths
Toán học là “ngôn ngữ của vũ trụ”, là thứ ngôn ngữ đặc biệt để giao tiếp giữa mọi thành phần trong vũ trụ này. Tìm hiểu về nguồn gốc của toán học, chúng ta bắt đầu từ Ai cập và vùng đất có tên là Mesopotamia – Lưỡng hà. Người Ai Cập cổ đại định cư trên bờ sông Nile và tin rằng thần sông, Hapy, gây ra lũ lụt mỗi năm.

Và để đền ơn nguồn nước mang lại sự sống, người dân cúng một phần nông sản như là lễ vật trả ơn. Trong khi dân cư ngày càng tăng, việc cai trị họ trở nên cấp thiết. Diện tích đất cần được tính toán, sản lượng cây trồng cần phải dự báo trước, tính và đối chiếu tiền thuế. Tóm lại, con người cần đo và đếm.

Từ đó các việc giao thương buôn bán đã dần hình thành nên hệ thống toán. Hy Lạp cũng là một trong những nơi bắt đầu của toán học. Ở đó, Euclid đã khai sinh ra hình học, và ông đã viết một trong những quyển sách nổi tiếng, quyển "Những nguyên lý của hình học".

Tuy nhiên các hệ thống tính toán có hiệu quả nhất lại bắt đầu từ Trung quốc. Vạn Lý Trường Thành ở Trung Quốc dài hàng ngàn dặm và được xây dựng trong gần 2000 năm, bức tường phòng thủ to lớn này hoàn thành vào năm 220 trước Công nguyên để bảo vệ đế chế Trung Hoa đang phát triển. Vạn lý Trường Thành của Trung Quốc là một kỳ công đáng ngạc nhiên của kỹ thuật xây dựng, được xây vượt qua những vùng nông thôn hoang sơ.

Ngay sau khi bắt đầu xây dựng, những người Trung Hoa cổ đại nhận ra rằng họ phải tính toán về khoảng cách, góc hình chiếu và số lượng nguyên vật liệu. Do đó không hề ngạc nhiên khi điều này đã truyền cảm hứng cho những nhà toán học xuất sắc để giúp xây dựng đế chế Trung Hoa.

Vào thời Trung Hoa cổ đại, toán học chỉ là một hệ thống các con số đơn giản mà đã đặt nền móng cho cách tính toán của chúng ta ngày nay. Khi một nhà toán học muốn làm một phép tính cộng, ông ấy dùng những que tre nhỏ. Những que tre này được sắp xếp để biểu thị những con số từ 1 đến 9, sau đó chúng được đặt theo cột, mỗi cột biểu thị hàng đơn vị, hàng chục hàng trăm, hàng nghìn, vân vân. Vì vậy số 924 được biểu thị bằng cách đặt số 4 vào cột hàng đơn vị, số 2 vào cột hàng chục và số 9 vào cột hàng trăm. Đó là thứ mà ngày nay chúng ta gọi là hệ thống giá trị thập phân.

Còn ở Ấn Độ, là nơi đầu tiên đưa ra khái niệm số không, số âm và lượng giác. Những nhà thiên văn học Ấn Độ sử dụng lượng giác để tìm ra khoảng cách tương đối giữa Trái Đất với Mặt trăng và Trái Đất với Mặt trời. Bạn chỉ có thể tính toán khi trăng khuyết, bởi vì đó là lúc mặt trăng đối diện trực tiếp với mặt trời, vì vậy Mặt Trời, Mặt Trăng và Trái Đất tạo thành một tam giác vuông.

Người Ấn Độ có thể đo góc giữa mặt trời và đài quan sát là 1/7 độ. Hàm sin của 1/7 độ cho ta tỉ lệ 400:1. Điều này có nghĩa là mặt trời xa Trái Đất hơn 400 lần so với mặt trăng. Vì vậy khi sử dụng lượng giác, các nhà toán học Ấn Độ có thể khám phá hệ mặt trời mà không cần phải ra khỏi Trái Đất.

Châu Âu thực ra đi sau rất lâu so với châu Á nhưng những gì đạt được sau đó lại trở thành nền lý thuyết tảng cơ bản được sử dụng rộng rãi nhất. Đóng góp lớn nhất của Fermat với toán học là phát minh ra lý thuyết số học hiện đại. Ông để lại một phạm vi rộng những giả định và định lý về số học bao gồm định lý cuối cùng nổi tiểng mang tên ông. Việc chứng minh định lý Ferma đã thách thức các nhà toán học trong hơn 350 năm.


Ở nước Anh và Đức, nơi Isaac Newton và Gottfried Leibniz phát minh ra phép tính tích phân và vi phân. Những năm đầu của thế kỷ 20, David Hilbert đã đề xuất 23 vấn đề mà ông thấy rất quan trọng đối với tương lai của toán học.

Với các khái niệm kỳ lạ, những câu chuyện xoay quanh cách mà chúng ta giải quyết những vấn đề chỉ ra cho chúng ta thấy toán học là thứ có thể vượt qua những ranh giới về văn hóa và thực sự là ngôn ngữ của cả thế giới này.
Tuấn Anh
Nguồn : http://www.baomoi.com/Home/KhoaHoc-TuNhien/khoahoc.baodatviet.vn/Phim-hay-Cau-chuyen-toan-hoc/8392911.epi






























-------------------------------------------------------------------------------------------
 Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic.
 Pure mathematics is, in its way, the poetry of logical ideas.
Albert Einstein .

Thứ Hai, 2 tháng 4, 2012

Kỷ niệm ngày sinh của Alexander Grothendieck - Giải thưởng nghiên cứu Clay 2012

Alexander Grothendieck

 Đây là bài viết trên ©  http://diendantoanhoc.net/
Xin phép tác giả được đăng tải lại trên Blog Toán - Cơ học ứng dụng  
Trân trọng cám ơn
 
In Email
Lịch sử toán học
Tác giả: Ban Biên Tập   
Thứ tư, 28 Tháng 3 2012 00:03
Nhân kỉ niệm ngày sinh của Alexander Grothendieck, BBT xin giới thiệu về cuộc đời và sự nghiệp Alexander Grothendieck.


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
Alexander Grothendieck (sinh ngày 28 tháng 3, 1928 ở Berlin, Đức; đôi khi viết theo tiếng Pháp là Alexandre Grothendieck) là một trong những nhà toán học có ảnh hưởng lớn nhất trong thế kỷ 20.

alt
 Alexander Grothendieck

Ông đóng góp chính cho sự phát triển cách mạng của lĩnh vực Hình học đại số, cũng như đóng góp lớn cho Lý thuyết số, Lý thuyết phạm trù và Đại số đồng điều, ngoài ra còn là những thành tựu ban đầu của ông trong Giải tích hàm. Ông được trao huy chương Fields năm 1966. Năm 1988 ông cùng với Pierre Deligne được trao Giải Crafoord, nhưng Grothendieck đã từ chối nhận giải.

Grothendieck là một nhà toán học nổi bật với cách tiếp cận trừu tượng trong toán học và chủ nghĩa hoàn hảo của ông trong các công thức và biểu diễn. Quả thực là sự tăng lên về sự trừu tượng và hình thức hóa trong toán học thuần túy trong thế kỷ 20 là một phần trong sự ảnh hưởng của ông. Tương đối ít các nghiên cứu của ông được công bố sau năm 1960 trên các tạp chí hàn lâm, và thường lưu hành dưới dạng các bài viết trong các hội thảo; sự ảnh hưởng của ông không chỉ trong toán học mà còn mở rộng đến cá nhân của các nhà toán học, như ảnh hưởng đến các nhà toán học Pháp và trường phái Zariski ở đại học Harvard. Ông nghỉ hưu năm 1988 và trong một vài năm ông ở ẩn.

Tuổi thơ và thời đi học

Thứ Tư, 28 tháng 3, 2012

Câu chuyện hấp dẫn về giả thuyết Poincare và những hình dạng của không gian .

Câu chuyện hấp dẫn về giả thuyết Poincare .

Đây là bài viết trên  http://tusach.thuvienkhoahoc.com
Xin phép tác giả được đăng tải lại trên Blog Toán - Cơ học ứng dụng  
Trân trọng cám ơn


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


Đã hơn 10 năm kể từ ngày Wiles chứng minh định lý lớn Fermat, toán học mới lại có một câu chuyện lí thú xuất hiện rộng rãi trên các phương tiện truyền thông. Đầu tiên là sự phức tạp của Poincare conjecture, sau đó là tính tình cổ quái của Perelman, rồi tiếp nữa là đầu óc "đại hán" của "thừa tướng" Yau, và cuối cùng là giới luật sư vào cuộc. Tất cả những yếu tố trên khiến cho toán học trở thành một vấn đề thời sự, một điều rất hiếm đối với môn khoa học mà đa số vẫn cho là "ăn hại, tự sướng".
Tối ngày 20 tháng 6 (năm 2006), hàng trăm nhà vật lý, trong đó có 1 người đọat giải Nobel, tập trung tại một thính phòng cùa Friendship Hotel (FH) ở Bắc Kinh để nghe bài giảng của một nhà toán học TQ là Shing-Tung Yau. Vào cuối những năm 1970s, ở độ tuổi 20, Yau đã có một loạt các phát minh đột phá, mở đầu cuộc cách mạng của lý thuyết dây trong vật lý. Những thành tựu này đã mang lại cho Yau huy chương Fields – giải thưởng cao quý nhất trong Toán học – cùng với danh tiếng của một nhà toán học vô song.
Yau trở thành giáo sư toán học tại Đại học Havard, viện trưởng viện toán học tại Bắc Kinh và Hồng Kông, và thường xuyên đi lại giữa Mĩ và TQ. Bài giảng của Yau tại FH là 1 phần của một hội nghị quốc tế về lý thuyết dây do chính Yau tổ chức với sự hỗ trợ của chính phủ Trung Quốc. Một trong những mục đích của hội thảo là quảng bá những khám phá gần đây trong lĩnh vực vật lý lý thuyết của TQ. (Hơn 6000 sinh viên đã đến nghe bài giảng chính của hội nghị do người bạn thân của Yau, Stephan Hawking, trình bày tại Great Hall of the People). Chỉ một vài người tham dự có thể hiểu được nội dung bài giảng của Yau: Giả thuyết Poincare (Poincare Conjecture – PC). Đây là một bài toán 100 tuổi cực kì phức tạp, liên quan đến đặc điểm của những mặt cầu 3 chiều. PC được các nhà toán học xem như “ chén thánh” (Holy Grail) (muốn biết chén thánh là gì có thể đọc Tân ước hoặc Da Vinci Code – ND) vì tầm quan trọng của nó trong toán học và vũ trụ học; và cũng bởi vì mọi nỗ lực chứng minh PC trong quá khứ đều thất bại.

Thứ Bảy, 24 tháng 3, 2012

Giả thuyết Henri Poincaré

Giả thuyết Henri Poincaré

Jules Henri Poincaré (29 April 1854 – 17 July 1912)


Cuối TK 19 – đầu TK 20, Jules Henri Poincaré có lẽ là nhà toán học vĩ đại nhất của nước Pháp, thậm chí của cả thế giới ngày đó. Tác giả của rất nhiều công trình toán học, vật lí học, triết học từng đoạt được nhiều giải thưởng quốc tế, trở thành thành viên hay chủ tịch của biết bao hiệp hội bác học, thành viên Viện hàn lâm khoa học Pháp, Henri Poincaré là hình ảnh tiêu biểu tốt đẹp nhất về sự thành đạt trí tuệ và xã hội mà giai cấp tư sản thế kỉ XIX có thể sản sinh. Đó cũng là nhà bác học « xuyên ngành » cuối cùng : như một triết gia về phương pháp luận, ông là tác giả những công trình kinh điển về nền tảng phương pháp khoa học, về cơ cấu não trạng của quá trình khám phá; ở vị trí nhà vật lí, ông đã 12 lần được đề nghị giải Nobel, và ngày nay được coi là đồng tác giả của thuyết tương đối « thu hẹp »; với tư cách nhà toán học, bên cạnh David Hilbert, ông được coi là nhà toán học vĩ đại nhất, đồng thời là « bậc thầy phổ quát cuối cùng », bao trùm đại số học lẫn hình học, lí thuyết số và hình học. Chính ông, trong một công trình năm 1895, đã sáng lập ra một ngành mới của hình học mà ông đặt tên là « analysis situs », ngày nay gọi là tôpô học (topo, tiếng Hi Lạp, có nghĩa : nơi, không gian).

*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran