Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Thứ Năm, 16 tháng 7, 2009

THE SOLUTION STABILITY OF VAN DER POL'S EQUATION .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.


THE SOLUTION STABILITY OF VAN DER POL'S EQUATION .




THE SOLUTION STABILITY OF

VAN DER POL'S EQUATION .

by CO. H . TRAN .


HUI - NCU HCMC

Vietnam coth123@math.com & cohtran@math.com Copyright 2004 November 06 2004 ------------------------------------------------------------------------------------------------------------------------------------------------------------------------ ** Abstract : The Van der Pol differential quation is solved by averaging method . ** Subjects: Vibration Mechanics , The Differential equations . ------------------------------------------------------------------------------------------------------------------------------------------------------------------------Introduction This worksheet demonstrates Maple's capabilities in finding the graphical solution and dealing with the stability of the steady state solution of Van der Pol 's differential equation . All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed . We consider the Van Der Pol differential equation :
[0] Two topics that we will be in discussion are - Finding the steady state solution of this equation by averaging method .- Estimating the stability of solution obtained . 1 .Define the model of problem : We examine the effect of non-linear system under external force caused by the AC generator ( see fig 1. )Image Image( fig 1. ) The differential equation of this model is given in the form + [1] After simplifying we obtain : [2]


2 . Construct the algorithm .
Generally the Van Der Pol differential equation can be expressed by : [3]In the special case let and the equation will be rewritten as : By using the transform [4]Then ω and substitute these relations to ( 2 ) it follows : ω Or [5] Thus we begin with : [6] To normalize this equation we find the solution which is expressed in the form x = acos ( t + γ )It is advantageous to write ϕ = t + γ then the solution will be x = acosϕ [7]From the transform x = acosϕ , x' = asin ϕ . We have x" = dx'/dt = a'sinϕ acosϕ . ϕ' By substituting to ( 6 ) , it gives a'sinϕ a cosϕ.ϕ '+a cosϕ μ (1 cosϕ ).(a sinϕ ) = 0 [8]In the other hand dx/dt = x' = a'cosϕ asinϕ .ϕ' = asinϕ [9] Obviously we reach to the following system of differential equations [10]
>
Warning, the name GramSchmidt has been rebound
Warning, the protected names norm and trace have been redefined and unprotected
>
(1)
>
(2)
>
(3)
>
Typesetting:-mprintslash([`assign`(a(tt), `+`(`-`(`*`(a, `*`(`^`(sin(phi), 2), `*`(mu, `*`(`+`(`-`(1), `*`(`^`(a, 2), `*`(`^`(cos(phi), 2)))))))))))], [`+`(`-`(`*`(a, `*`(`^`(sin(phi), 2), `*`(mu, `*`...
Typesetting:-mprintslash([`assign`(phi(tt), `+`(1, `*`(mu, `*`(sin(phi), `*`(cos(phi)))), `-`(`*`(mu, `*`(`^`(a, 2), `*`(sin(phi), `*`(`^`(cos(phi), 3))))))))], [`+`(1, `*`(mu, `*`(sin(phi), `*`(cos(p... (4)
>
By using the symbols a(tt) = a'(t) , ϕ(tt) = ϕ'(t) [11] Execute the averaging method for a'(t) and ϕ'(t) , we have
>
Typesetting:-mprintslash([`assign`(a0(tt), `+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2))))))))))], [`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))]) (5)
>
Typesetting:-mprintslash([`assign`(`ϕ0`(tt), 0)], [0]) (6)
>
The expressions of a' and ϕ' are calculated in the forms : a' = μ < > = [12]
ϕ' = μ < > = [13]
The steady state solution occurs when a0 = 0 or a0 = 2 If a0 = 0 then x = x' = 0 this is a trivial solution ( equilibrium ) . If a0 = 2 then x = 2cosϕ and x' = -2sinϕ . [14] The necessary and sufficient condition for solution stability includes a' = da/dt = Ψ(a) with Ψ(ao) = 0 and Ψ'(ao) <>

>


Typesetting:-mprintslash([`assign`(Psi(a), `+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2))))))))))], [`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))]) (7)


>



Typesetting:-mprintslash([`assign`(DaohamcuaPsi(a), `+`(`*`(`/`(1, 2), `*`(mu)), `-`(`*`(`/`(3, 8), `*`(`^`(a, 2), `*`(mu))))))], [`+`(`*`(`/`(1, 2), `*`(mu)), `-`(`*`(`/`(3, 8), `*`(`^`(a, 2), `*`(mu...
Dao ham cua ham a'(t) la : (8)


> subs(a=2,DaohamcuaPsi(a));

> print("Gia tri cua a''(t) tai a = 2 la : a''(2) = ",subs(a=2,DaohamcuaPsi(a)));

> subs(a=0,DaohamcuaPsi(a));
> print("Gia tri cua a''(t) tai a = 0 la : a''(0) = ",subs(a=0,DaohamcuaPsi(a)));
`+`(`-`(mu))
Gia tri cua a''(t) tai a = 2 la : a''(2) =
`+`(`*`(`/`(1, 2), `*`(mu)))
Gia tri cua a''(t) tai a = 0 la : a''(0) = (9)
>
Thus if ao = 0 , a"(0) = then the solution is not stable .
If ao = 0 , a"(0) = then the solution is stable asymtotically.
Note : By solving the equation ( 12 ) for the vibration amplitude a(t) ( slowly varying coefficients ) then finding the solution expression x(t) of Van Der Pol differential equation , we get
> a0(tt);
> diff_eq:= diff(a(t),t)=-mu*a(t)*(-4+(a(t)^2))/8;
> init_con:=a(0)=ao;biendo:=[dsolve({diff_eq,init_con}, {a(t)})];
> x:=biendo[1]*cos(phi);
`+`(`-`(`*`(`/`(1, 8), `*`(a, `*`(mu, `*`(`+`(`-`(4), `*`(`^`(a, 2)))))))))
Typesetting:-mprintslash([`assign`(diff_eq, diff(a(t), t) = `+`(`-`(`*`(`/`(1, 8), `*`(mu, `*`(a(t), `*`(`+`(`-`(4), `*`(`^`(a(t), 2))))))))))], [diff(a(t), t) = `+`(`-`(`*`(`/`(1, 8), `*`(mu, `*`(a(t...
Typesetting:-mprintslash([`assign`(init_con, a(0) = ao)], [a(0) = ao])
Typesetting:-mprintslash([`assign`(biendo, [a(t) = `+`(`/`(`*`(2, `*`(ao)), `*`(`^`(`+`(`*`(`^`(ao, 2)), `*`(4, `*`(exp(`+`(`-`(`*`(mu, `*`(t))))))), `-`(`*`(exp(`+`(`-`(`*`(mu, `*`(t))))), `*`(`^`(ao...
Typesetting:-mprintslash([`assign`(x, `*`(cos(phi), `*`(a(t))) = `+`(`/`(`*`(2, `*`(cos(phi), `*`(ao))), `*`(`^`(`+`(`*`(`^`(ao, 2)), `*`(4, `*`(exp(`+`(`-`(`*`(mu, `*`(t))))))), `-`(`*`(exp(`+`(`-`(`... (10)
>
with ϕ = t + γ . [15]
>
Typesetting:-mprintslash([`assign`(x, proc (t) options operator, arrow; `+`(`/`(`*`(2, `*`(cos(`+`(t, gamma)))), `*`(sqrt(`/`(`*`(`+`(`*`(`^`(a, 2)), `-`(`*`(`^`(a, 2), `*`(exp(`+`(`-`(`*`(mu, `*`(t))... (11)
>
Warning, the previous bindings of the names RationalCanonicalForm and adjoint have been removed and they now have an assigned value
> with(plots):a:=0.5;y:=t->2*cos(t + gamma)/sqrt((a^2-a^2*exp(-0.1*t)+4*exp(-0.1*t))/a^2);
> plot(y(t),t=0..4*Pi);
> animate(plot,[2*cos(x*t + gamma)/sqrt((a^2-a^2*exp(-0.1*t)+4*exp(-0.1*t))/a^2),x=0..4*t],t=0..Pi,frames=100 );
Typesetting:-mprintslash([`assign`(a, .5)], [.5])
Typesetting:-mprintslash([`assign`(y, proc (t) options operator, arrow; `+`(`/`(`*`(2, `*`(cos(`+`(t, gamma)))), `*`(sqrt(`/`(`*`(`+`(`*`(`^`(a, 2)), `-`(`*`(`^`(a, 2), `*`(exp(`+`(`-`(`*`(.1, `*`(t))...
Plot_2d
Plot_2d
>
Use graphical method to consider the solution stability of Van Der Pol's differential equation :
> restart;with(DEtools):mu:=0.5;
> DEplot({(D@@2)(x)(t)+x(t)-mu*(1-x(t)^2)*D(x)(t)=0},{x(t)},t=-10..50,[[x(0)=1,D(x)(0)=1]],stepsize=0.05,title=`Nghiem on dinh cua pt Van Der Pol`);
Typesetting:-mprintslash([`assign`(mu, .5)], [.5])
Plot_2d
>
3 . Conclusion . From graphical results , we reach to conclusion that the steady state solution stability of Van Der Pol's diffential equation must be precise and estimating the property of solution obtained is very necessary . As presented above , we might also use the normalization to ( 2 ) by determining the non-trivial solution in the form
[16]
with k = 1 Otherwise Substitute x ' to ( 6 ) after simplifying it follows :
>
> f:=vector([[0], [mu*F]]);
> V:=linsolve(A,f);
Warning, the name GramSchmidt has been rebound
Warning, the protected names norm and trace have been redefined and unprotected
(12)
>
We rewrite the expressions of M' = N' = [17]
With
Use averaging method for ( 17 ) we get :
M ' = μ <- Fsint > =
N' = μ <> = [18]
The steady state solution exists when M = 0 and N = 0 ( trivial solution ) Or M = 2 or M = -2 and N = 0
Thus x = 2cost , x = 2cost If M = 0 and N = 0 or N = 4 Then x = 4sint The steady state solutions can be formed generally :
`or`(x = `+`(`*`(2, `*`(cost)), `*`(4, `*`(sint))), x = `+`(`-`(`*`(2, `*`(cost))), `*`(4, `*`(sint))))
But these forms are equivalent to x = 2cosϕ [ see ( 14 ) ]
Next we begin with Krylov - Bogoliubov approximate method for the Van der Pol's differential equation
with ) x ' , and μ is a small constant .
The solution will be estimated by x = r(t) cosϕ(t)
By taking the first order approximate terms ( neglecting the second and third order errors of constant μ ) we can find the amplitude r(t) and the global phase function ϕ(t) from the following system
[19]
If the initial condition r(0) = ro is satisfied then the solution of ( 15 ) will be equivalent to the solution of second order linear differential equation
[20]
with the error of estimation based on the order of
The first order approximate is noticeable in the case of periodic vibration , because the equivalent linear differential equation gives us the accumulation and dissipation of energy based on vibration period which we might obtain from the given non-linear differential equation . Therefore it is useful to apply the equivalent second linear differential equation to observe the non-linear resonant phenomenon .REFERENCES
[1] Menh .C. Nguyen , Dao dong phi tuyen , Manuscript , Vien Co hoc , Hanoi 2002 . [2] Korn . G , Korn . T ., So tay toan hoc , Trans Vietnamese , NXB DH-THCN , Hanoi 1978
_______________________________________________________________________________________________
Legal Notice: Maplesoft, a division of Waterloo Maple Inc. 2009. Maplesoft and Maple are trademarks of Waterloo Maple Inc. Neither Maplesoft nor the authors are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the authors for permission if you wish to use this application in for-profit activities.






Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.

 -------------------------------------------------------------------------------------------

 Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic. 
Pure mathematics is, in its way, the poetry of logical ideas. 
Albert Einstein .


Không có nhận xét nào :

Đăng nhận xét

Cám ơn lời bình luận của các bạn .
Tôi sẽ xem và trả lời ngay khi có thể .


I will review and respond to your comments as soon as possible.,
Thank you .

Trần hồng Cơ .
Co.H.Tran
MMPC-VN
cohtran@mail.com
https://plus.google.com/+HongCoTranMMPC-VN/about

*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran