Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Hiển thị các bài đăng có nhãn inverse laplace. Hiển thị tất cả bài đăng
Hiển thị các bài đăng có nhãn inverse laplace. Hiển thị tất cả bài đăng

Thứ Sáu, 28 tháng 6, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 4- PHẦN 3 .





   


GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 4-


PHẦN 3 . 





Phép biến đổi Laplace .
Phép biến đổi ngược Laplace .
Giải phương trình vi phân bằng phép biến đổi Laplace .
Bài tập thực hành .  







Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

14/05/2013 .


****************************************************************************

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.




1. Phép biến đổi Laplace .
Phép biến đổi Laplace là một trong số những phép biến đổi tích phân quan trọng nhất áp dụng cho việc giải các phương trình vi phân tuyến tính . Nhờ phép biến đổi Laplace ta có thể đưa phương trình vi phân tuyến tính cấp cao hệ số hằng về một phương trình đại số , đặc biệt hơn nữa nó rất hữu dụng khi tìm nghiệm cho các phương trình vi phân tuyến tính có vế phải là những hàm xung , hàm trơn từng khúc hoặc hàm gián đoạn .  Trong phần này chúng ta sẽ tìm hiểu về phép biến đổi Laplace , các tính chất và ứng dụng cho việc giải phương trình vi phân tuyến tính cấp cao .
1.1 Định nghĩa - ký hiệu .
Cho hàm số f(t)  xác định với mọi t > 0 , phép biến đổi tích phân 
Tích phân trong ký hiệu trên hiểu theo nghĩa suy rộng , 

1.1.1  Hàm gốc - định lý cơ bản .
a. Hàm gốc . 
Cho f(t) là hàm với biến thực t , ta nói f(t) là hàm gốc nếu :
( i )  f(t) liên tục từng đoạn khi t  ³  0
( ii )  " t > 0  , $ M > 0 , so  ³  0  : 
| f(t) |  £  M exp(sot )   so  gọi là chỉ số tăng .
( iii )  f(t)  =  0  khi  t  <  0 . 
 Định lý sau trong trường hợp tổng quát đúng với biến phức  p = s + is  .


b. Định lý cơ bản . 
  Cho 

Ví dụ 1 .
Tìm ảnh của các hàm sau 


Lời giải .



1.1.2  Các tính chất - định lý Mellin .

a. Tính chất . 
(i) Tuyến tính . 
Cho f(t) , g(t) là 2 hàm gốc ,  A , B là 2 hằng số thực ( hoặc phức )  

(ii) Đồng dạng .
Cho f(t) là hàm gốc ,  l   là hằng số thực dương

(iii) Dời ảnh .
Cho f(t) là hàm gốc , z là số phức tùy ý 

(iv)  Trễ .
Cho f(t) là hàm gốc 


b. Định lý Mellin . 
  Cho f(t) là hàm gốc có chỉ số tăng so  và F(p) là ảnh của nó tại mọi điểm f(t) liên tục , ta có 




Định lý Mellin cho phép ta tìm được hàm gốc  f(t) dựa trên ảnh F(p) của nó qua phép biến đổi Laplace . Đây chính là cơ sở của phép tính Laplace ngược tìm hàm gốc sau khi đã thực hiện các tính toán trên hàm ảnh F(p) .




1.2  Bảng công thức Laplace - thực hành .
1.2.1  Bảng công thức Laplace .
Dưới đây là bảng công thức Laplace áp dụng cho hàm gốc có biến thực t và biến của ảnh là số thực .   
Bảng Laplace  .

Hàm hyperbolic và hàm Gamma .
Hàm Dirac .

1.2.2  Thực hành .
Ví dụ 2 .

Dựa vào bảng Laplace tìm ảnh của các hàm gốc sau
 Lời giải .





Các bạn dùng các công thức bảng Laplace , kết hợp với Maple tìm ảnh của các hàm gốc e. và f.  còn lại trong ví dụ 2.  trên .
Xem bảng Laplace 

http://www.slideshare.net/cohtran/laplace1-8merged


XEM TIẾP 

http://cohtran-toan-don-gian.blogspot.com/2013/05/gioi-thieu-ve-phuong-trinh-vi-phan.html




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.
------------------------------------------------------------------------------------------- 
Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic. 
Pure mathematics is, in its way, the poetry of logical ideas.
 Albert Einstein .


Thứ Hai, 3 tháng 6, 2013

GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN . Chương 4 - PHẦN 4 .




   


GIỚI THIỆU VỀ PHƯƠNG TRÌNH VI PHÂN .









Chương 4-


PHẦN 4 . 





Lý thuyết tổng quát 
-Phương trình vi phân tuyến tính cấp cao .
-Phương trình vi phân cấp cao tổng quát .
-Các dạng phương trình vi phân giảm cấp .












Loạt bài sau đây giới thiệu về phương trình vi phân một cách tổng quan , các khái niệm cơ bản và phương pháp giải được trình bày tinh giản dễ hiểu . Bạn đọc có thể sử dụng các phần mềm hoặc công cụ online trích dẫn chi tiết trong bài viết này để hỗ trợ cho việc học tập và nghiên cứu . Ngoài ra tác giả cũng sẽ đề cập đến những ví dụ minh họa cụ thể , các mô hình thực tế có ứng dụng trong lĩnh vực phương trình vi phân .  



Trần hồng Cơ .

28/05/2013 .



****************************************************************************Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.



1 . Lý thuyết tổng quát 
-Phương trình vi phân tuyến tính cấp cao .
1.1  Khái niệm .
Như đã trình bày ở Chương 4-Phần 1 - 1.1 , phương trình vi phân tuyến tính cấp cao có dạng  (1) 
*Dạng tổng quát của phương trình vi phân tuyến tính theo toán tử như sau 


xét  P(xt) là đa thức theo biến t  với các hệ số là hàm ak (x) , có dạng  
thay biến  t  bằng toán tử vi phân D ta có
**Dạng tổng quát của phương trình vi phân cấp n là  G(x,v(x)) = 0  trong đó 



1.2 Bài toán Cauchy và điều kiện tồn tại duy nhất nghiệm .

Bài toán Cauchy đặt ra là tìm nghiệm của G(x,v(x)) = 0 thỏa mãn các điều kiện :


Nhờ định lý hàm ẩn dưới một số điều kiện có thể viết lại dưới dạng (2) :
Lưu ý :
+Dạng (1) biểu diễn phương trình tuyến tính cấp cao theo toán tử vi phân  D .
+Dạng (2)  biểu diễn phương trình vi phân hiển cấp n theo biến ( u(x)) .
+Dạng (3) gọi là dạng ẩn , biểu diễn phương trình vi phân tuyến tính cấp cao  G(x,v(x)) = 0  với 




+Định lý Péano về sự tồn tại nghiệm .


+Định lý Picard-Lindelof
Đưa ra một tiêu chuẩn để phương trình vi phân (2) có nghiệm duy nhất 
*Liên tục Lipschitz . 
Hàm Fu(x)) có tính chất trên gọi là liên tục đối với biến u theo nghĩa Lipschitz  .
** Định lý Picard - Lindelof .
Nếu phương trình vi phân (2) thỏa mãn định lý Péano và hơn nữa nếu F liên tục Lipschitz theo u thì   tồn tại nghiệm y = y(x) và nghiệm này là duy nhất .
1.3 Các dạng biểu thức nghiệm của phương trình vi phân cấp cao .
+Nghiệm y = y(x,C1,C2,...,Cn) xác định trên DxU  khả vi liên tục đến cấp n , gọi là nghiệm tổng quát dạng hiển của (2) <=>
(i) 


(ii) 
Nghiệm y = y(x,C1,C2,...,Cn)  thỏa mãn (2) với các  Ck   ( = 1,2,...,n )  tìm được ở (i) .
 Để tìm nghiệm tổng quát dạng hiển của (2) ta thay thế  x0 và u0 vào hệ , giải hệ này tìm các giá trị Ck   ( = 1,2,...,n ) .
+Nghiệm FF (x,y,C1,C2,...,Cn) = 0 , xác định trên DxU    , gọi là nghiệm tổng quát dạng ẩn của (2) .
+Nghiệm { x = c(t,Ck )  ,  y x(t,Ck ) với = 1,2,...,n ) } , gọi là nghiệm tổng quát dạng tham số của (2).
+Nghiệm riêng là nghiệm thỏa mãn tính duy nhất nghiệm theo định lý Picard Lindelof  với các hằng số Ck   ( = 1,2,...,n )  tìm được khi giải các điều kiện cho trước .
+Nghiệm kỳ dị là nghiệm không thỏa mãn tính duy nhất nghiệm theo định lý Picard Lindelof ( không bị chặn theo biến u  ) , có thể hiểu tại điểm (x0,u0)  nào đó có nhiều nghiệm của phương trình cùng đi qua  ( Các bạn có thể xem ở Chương 1-Phần 3 từ 1.1 đến 1.3 về tính duy nhất nghiệm của phương trình vi phân ) .
1.3 Nghiệm kỳ dị của phương trình vi phân cấp cao .

Chủ Nhật, 6 tháng 1, 2013

TÀI LIỆU TRỰC TUYẾN .



TÀI LIỆU TRỰC TUYẾN .









Trong các văn bản khoa học dưới đây có một số code cho phương trình vi phân , phương trình tích phân trong đó trình bày các phương pháp xấp xỉ như Runge-Kutta , Sokolov , tuyến tính hóa tương đương , phép biến đổi Laplace ... 
< Để đọc trực tuyến bạn Click chuột phải , chọn Open in a new tab








-------------------------------------------------------------------------------------------



Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic.
Pure mathematics is, in its way, the poetry of logical ideas.
Albert Einstein .

Thứ Tư, 23 tháng 5, 2012

TOÁN KỸ THUẬT - YOUTUBE



TOÁN KỸ THUẬT - YOUTUBE








***************************************************************








------------------------------------------------------------------------------------------------------------------
Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic. 
Pure mathematics is, in its way, the poetry of logical ideas. 



Albert Einstein .

Thứ Sáu, 20 tháng 4, 2012

MỘT CÔNG CỤ TÍNH TOÁN TRỰC TUYẾN KHÁ TỐT .

MỘT CÔNG CỤ TÍNH TOÁN TRỰC TUYẾN KHÁ TỐT









Bài viết này trước đây trình bày về công cụ trực tuyến ENCALC  hiện trang http://www.encalc.com/  không còn hoạt động .




Sau đây là phần cập nhật thêm về công cụ web2.0calc với nhiều chức năng tính toán khá tốt .
Các bạn có thể tham khảo chi tiết tại   http://web2.0calc.com/



Web 2.0 scientific calculator


Complex Numbers
(2+2i)*(3+3i)
Equations
x^2+2x-1=9
Graphs
plot(sin(x),x=0..360)
Linear Algebra
[[1, 2, 3][4, 5, 6][7, 8, 9]]*(1, 2, 3)
Percent
100+19%
Standard Functions
sqrt(27, 3)
















---------------------------------------------------------------------------------------------------

Chúng ta phải biết và chúng ta sẽ biết .

David Hilbert .



Thứ Ba, 24 tháng 7, 2007

THE RELAXATION FUNCTION PROBLEM .

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License.







The Relaxation function problem of an orthotropic cylinder .

Co. H. Tran. Faculty of Mathematics, University of Natural Sciences - VNU-HCMcoth123@math.com & cohtran@math.com
Copyright 2007
June 06 2007

NOTE:This worksheet demonstrates Maple's capabilities in researching the numerical and graphical solution of the relaxation function problem of an orthotropic cylinder .
All rights reserved. Copying or transmitting of this material without the permission of the authors is not allowed .

Use Maple 10


Abstract
The worksheet presents some thoughts about the plane strain problem of the viscous orthotropic composite materials cylinder under internal and external pressure with
respect to using the direct method . To compute the interior stress , from the elastic solution we use the correspondence principle and the inverse Laplace transform .


1. Analysis of the composite orthotropic cylinder :


We examine an orthotropic viscoelastic composite material cylinder which has the horizontal section within limit of 2 circles : r = a , r = b ( a <>



2. Direct method : The direct method is an approximate inversion technic based on the direct relation between the time dependence and the transformed solution . If the plot of the viscoelastic solution has small curvature when plotted with variables logt then : (1) where C is Euler's constant .. (1) is exact if , is proportional to logt . (1) can be rewritten : (2) Note that (2) is used when , has small curvature with respect to logt . From the correspondence principle we obtain the viscoelastic solution . (3) (4) (5) (6) The operator moduli : (7) We consider the relaxation test , in which , is a constant at t = 0 (8) . We have , , (9) By the similar way , we find out : (10) Assume that the relaxation moduli have power form : (11) where are constants . By applying the Laplace transfom for (11) , we obtain the operator moduli : (12) with the values of Gamma function : ; (13)



3. Parameters - The Numerical and Graphical Solution : >
restart;cycrstrecom:=proc(T,Gamma1,c1,P1,Q1,M1,d1) global P,Q,sigmaat1,sigmaat2,sigmabt2,sigmabt1,sigmaatisotropic,sigmabtisotropic ; local To,E,E1,M,d,j,Gamma,Gamma_form,gamma;with(inttrans):with(plottools):with(plots):print(" PARAMETERS DEFINITION : ");print( T=To,gamma=Gamma1,c=c1);;;print(" REPRESENTATION OF STRESS : ");;;;;print(" LAPLACE TRANSFORM OF MODULI : ");;;;;Gamma_form:=sqrt(E1[theta]/E1[r]);print(" EXPRESSION OF : ",gamma=Gamma_form;;print(" SUBSTITUTE ",c=c1 ,p =1/(2*t),gamma=Gamma) ;;;;print(" CHANGE THE PRESENTATION OF TIME INTO LOG(t/To) ");;;print(" OUTPUT DATA ");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;M:=M1;;;d:=d1;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;printf(" s=log(t/To) sigma[Theta](a)(s)/P \n\n");
>
for j from 0 to M do printf("%10.1f %10.4f \n", -d*(10-j), subs(s=-d*(10-j),sigmaat2)) ; end do;
>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;for j from 1 to M do printf("%10.1f %10.4f \n", d*j, subs(s=d*j,sigmaat2)) ; end do;
>
;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;print(" NUMERICAL AND GRAPHICAL SOLUTION ");;printf("\n%s"," KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP "); ;plot([sigmaat2,sigmaat2,sigmaatisotropic],s=-10..30,y=0.85..5.2,color=[grey,black,black],style=[line,point,point],thickness=1,symbol=[cross,diamond,cross],linestyle=1,axes=boxed,labels=["logt/To","sigma(a,t)/P"],legend=[`sigma(a,t)/P`,`sigma(a,t)/P`,`Isotropic solution`],title="Numerical solution");;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
>
end:
>
cycrstrecom(1, .83, 1/2, 1, 0, 30, 1);


s=log(t/To) sigma[Theta](a)(s)/P -10.0 1.4286 -9.0 1.4286 -8.0 1.4287 -7.0 1.4289 -6.0 1.4294 -5.0 1.4305 -4.0 1.4335 -3.0 1.4409 -2.0 1.4595 -1.0 1.5056 0.0 1.6182 1.0 1.8804 2.0 2.4264 3.0 3.3300 4.0 4.3240 5.0 4.8725 6.0 4.8419 7.0 4.5127 8.0 4.1110 9.0 3.7260 10.0 3.3828 11.0 3.0857 12.0 2.8323 13.0 2.6184 14.0 2.4396 15.0 2.2913 16.0 2.1691 17.0 2.0691 18.0 1.9877 19.0 1.9217 20.0 1.8684 1.0 1.8804 2.0 2.4264 3.0 3.3300 4.0 4.3240 5.0 4.8725 6.0 4.8419 7.0 4.5127 8.0 4.1110 9.0 3.7260 10.0 3.3828 11.0 3.0857 12.0 2.8323 13.0 2.6184 14.0 2.4396 15.0 2.2913 16.0 2.1691 17.0 2.0691 18.0 1.9877 19.0 1.9217 20.0 1.8684 21.0 1.8255 22.0 1.7910 23.0 1.7634 24.0 1.7413 25.0 1.7237 26.0 1.7096 27.0 1.6984 28.0 1.6894 29.0 1.6823 30.0 1.6766

KET THUC BAI TOAN ONG TRU COMPOSITE DAN NHOT TRUC HUONG BANG PHUONG PHAP TRUC TIEP

>

REFERENCES

[1] Ngo Thanh Phong , Nguyen Thoi Trung , Nguyen Dình Hien , Ap dung
phap gan dung bien doi Laplace nguoc de giai bai toan bien dang phang trong
lieu composite dan nhot truc huong , Tap chí phat trien KHCN , tap 7 , so 4 &
in Vietnamese ) , 2002 .

[2] R.A. Schapery , Stress Analysis of Viscoelastic Composite Materials ,
Edited by G.P.Sendeckyj ,Academic Press , Newyork –London , 1971 .


Legal Notice:
The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.








Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 United States License. -------------------------------------------------------------------------------------------
Toán học thuần túy, theo cách của riêng nó, là thi ca của tư duy logic. 
Pure mathematics is, in its way, the poetry of logical ideas. 
Albert Einstein . 


*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran