Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Thứ Tư, 1 tháng 7, 2015

GIẢI TOÁN PHỔ THÔNG BẰNG CÁC CÔNG CỤ TRỰC TUYẾN . Phần 8b . HÌNH HỌC - Đường cong 2D - Conics - Tiếp tuyến với Hyperbola


GIẢI TOÁN PHỔ THÔNG BẰNG CÁC CÔNG CỤ TRỰC TUYẾN .


Phần 8b . HÌNH HỌC - Đường cong 2D - Conics - Tiếp tuyến với Hyperbola 


DANH MỤC CÔNG CỤ GIẢI TOÁN TRỰC TUYẾN  MATHEMATICA  WOLFRAM | ALPHA .

Giới thiệu .

Bạn đọc truy cập vào đường dẫn  http://cohtrantmed.yolasite.com/widgets-tructuyen  để sử dụng các widgets giải toán trực tuyến W|A Mathematica theo chỉ mục trong danh sách dưới đây .

Những widgets này đã được tác giả sắp xếp theo từng môn học và cấp lớp theo ký hiệu như sau :

D : Đại số . Ví dụ  D8.1 widget dùng cho Đại số lớp 8 , mục 1 - Khai triển , rút gọn biểu thức đại số .
H : Hình học . Ví dụ  H12.3  widget dùng cho Hình học lớp 12 , mục 3 - Viết phương trình tham số của đường thẳng trong không gian .
G : Giải tích . Ví dụ : G11.7  widget dùng cho Giải tích lớp 11 , mục 7 - Tính đạo hàm cấp cao của hàm số
GI : Giải tích cao cấp I . Ví dụ GI.15  widget dùng cho Giải tích cao cấp I , mục 15 - Khai triển hàm số bằng đa thức TAYLOR
GII : Giải tích cao cấp II .


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


 ĐẠI SỐ 8

D8.1  Khai triển , rút gọn biểu thức đại số
D8.2  Rút gọn phân thức
D8.3  Phân tích thừa số
D8.4  Nhân 2 đa thức
D8.5  Khai triển tích số ( có thể dùng để khai triển Newton )
D8.6  Phân tích thừa số

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 10

D10.1 Giải phương trình nguyên Diophante
D10.2 Giải phương trình tuyệt đối
D10.3 Giải phương trình chứa tham số
D10.4  Giải phương trình đại số
D10.5  Giải phương trình từng bước
D10.6  Giải bất phương trình minh hoạ bằng đồ thị

D10.8  Tính giá trị biểu thức hàm số
D10.9  Giải bất phương trình đại số và minh hoạ bằng đồ thị
D10.10  Giải bất phương trình đại số - tìm miền nghiệm
D10.11  Giải phương trình đại số
D10.12  Giải phương trình vô tỷ
D10.13  Giải phương trình minh hoạ từng bước
D10.14  Giải phương trình dạng hàm ẩn
D10.15  Giải hệ thống phương trình tuyến tính , phi tuyến
D10.16  Giải hệ phương trình
D10.17  Vẽ miền nghiệm của bất phương trình đại số
D10.19  Tối ưu hoá hàm 2 biến với các ràng buộc
D10.20  Tìm giao điểm của đồ thị hàm số và trục hoành Ox , trục tung Oy

HÌNH HỌC 10

H10.1  Tính diện tích tam giác trong hệ toạ độ Oxy
H10.3  Khảo sát conic ( đường tròn , Ellipse , Parabola , Hyperbola )
H10.2  Tính khoảng cách từ 1 điểm đến đường thẳng trong Oxy



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 11

D11.1 Thuật chia Euclide dùng cho số và đa thức  ( HORNER )
D11.2  Tính tổng nghịch đảo của n số tự nhiên




D11.6  Khai triển nhị thức Newton


GIẢI TÍCH 11


G11.1  Tính gíá trị một chuỗi số  theo n
G11.2  Đa thức truy hồi
G11.3  Khảo sát tính hội tụ của chuỗi số
G11.4  Tính giới hạn của chuỗi số khi  $n \rightarrow  \infty$
G11.5  Tìm hàm số ngược của hàm số cho trước
G11.6  Tìm đạo hàm của hàm số hợp - giải thích
G11.7   Tính đạo hàm cấp cao của hàm số
G11.8   Tìm giới hạn của hàm số
G11.9   Tìm giới hạn của hàm số
G11.10  Tính đạo hàm hàm số có dạng U/V
G11.11  Tìm đạo hàm của hàm số cho trước
G11.12  Tìm đạo hàm của hàm số cho trước

G11+12.1   Tính đạo hàm ,tích phân , giới hạn , vẽ đồ thị


LƯỢNG GIÁC 11

L11.1   Giải phương trình lượng giác
L11.2   Giải phương trình lượng giác trên một đoạn
L11.3   Tìm chu kỳ của hàm số tuần hoàn
L11.4   Khai triển công thức lượng giác



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 12

D12.1   Cấu trúc của số phức
D12.1   Giải phương trình mũ
D12.3   Giải  phương trình chứa tham số
D12.4   Giải  phương trình  bất kỳ  ( Bậc 2 , 3 , ... , mũ  , log , căn thức )
D12.5   Giải phương trình mũ



GIẢI TÍCH 12


G12.1  Vẽ đồ thị biểu diễn phương trình
G12.2    Khảo sát hàm số hữu tỷ
G12.3   Vẽ đồ thị trong toạ độ cực (Polar)
G12.4    Tìm cực trị của hàm số
G12.5    Vẽ đồ thị hàm số 2D
G12.6   Tìm đạo hàm cấp 2 của hàm số
G12.7    Vẽ nhiều hàm số - Basic plot. To plot two or more functions, enter {f1(x), f2(x),...}
G12.8    Tìm điểm uốn của hàm số cho trước
G12.9    Tìm nghiệm của các phương trình  y = 0 , y ' = 0 ,  y " = 0
G12.10    Tính tích phân bất định
G12.11    Tính tích phân bất định minh hoạ từng bước
G12.12   Tính tích phân bất định minh hoạ từng bước
G12.13   Tìm đường tiệm cận của hàm số
G12.14   Tính diện tích hình phẳng giới hạn bởi 2 đường cong (C1) , (C2)
G12.15  Tìm giao điểm của hàm số đa thức và trục hoành Ox - Vẽ đồ thị .
G12.16    Tính thể tích vật thể tròn xoay giới hạn bởi (C1) , (C2)
G12.17    Vẽ đồ thị hàm số ( có đường tiệm cận )
G12.18   Vẽ đồ thị 2D , 3D
G12.19   Tìm hoành độ giao điểm giữa 2 đường cong (C1) , (C2)
G12.20    Vẽ đường cong tham số 3D
G12.21    Tính diện tich mặt tròn xoay
G12.22    Tích thể tích vật tròn xoay  (C) , trục  Ox , x =a , x= b
G12.23    Thể tích vật tròn xoay
G12.24    Tích thể tích vật tròn xoay (C1) , (C2) , trục OX , x = a , x = b
G12.25    Khảo sát hàm số đơn giản
G12.26    Tìm cực trị của hàm số
G12.27    Tìm nguyên hàm của hàm số
G12.28    Tính tích phân xác định


HÌNH HỌC 12


H12.1  Tính khoảng cách 2 điểm trong 2D , 3D
H12.2   Viết phương trình mặt phẳng qua 3 điểm trong không gian
H12.3  Viết phương trình tham số của đường thẳng trong không gian
H12.4   Tìm công thức thể tích , diện tích hình không gian
H12.5   Vẽ đồ thị 2D , mặt 3D
H12.6    Tích có hướng 2 vector



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

GIẢI TÍCH CAO CẤP

GI.1    Vẽ đồ thị , mặt 3D
GI.2   Vẽ đồ thị , mặt  3D
GI.3    Tích phân 2 lớp
GI.5    Tích phân kép
GI.6    Tích phân bội 3
GI.7    Tích phân bội 3
GI.8    Tích phân suy rộng
GI.9    Chuỗi và dãy số
GI.10    Các bài toán cơ bản trong vi  tích phân
GI.11     Vẽ hàm từng khúc ( piecewise ) - dùng để xét tính liên tục của hàm số
GI.12    Tính đạo hàm và tích phân một hàm số cho trước
GI.13     Vẽ đồ thị hàm số trong hệ toạ độ cực
GI.14     Tính đạo hàm riêng
GI.15    Khai triển hàm số bằng đa thức TAYLOR
GI.16    Tính tổng chuỗi số  n = 1...$\infty$
GI.17     Vẽ  đồ thị  3 hàm số

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Bài viết sau đây mô tả các khái niệm toán học và hướng dẫn tính toán chi tiết bằng công cụ trực tuyến , bạn đọc có thể tham khảo những nội dung chính yếu được đề cập đến trong giáo trình toán phổ thông  cùng với các ví dụ minh họa  .

Một số website hữu ích phục vụ cho việc giảng dạy và học tập môn toán :

http://quickmath.com/
http://analyzemath.com/
http://www.intmath.com/
http://www.mathportal.org
https://www.mathway.com/
https://www.symbolab.com/
http://www.graphsketch.com/
http://www.meta-calculator.com/online/?home
http://cohtrantmed.yolasite.com/widgets-tructuyen



8.  HÌNH HỌC - Đường cong 2D - Conics - Hyperbola

8.1.3   Viết phương trình tiếp tuyến với Hyperbola  .

Nhắc lại  về phương trình tiếp tuyến với Hyperbola .

-  Phương trình tiếp tuyến (T) tại một điểm M thuộc Hyperbola .

Cho (H) tâm O(0,0) :  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(dạng chính tắc) , đường thẳng (T)   $Ax+By+C=0$
và điểm $M(x_M,y_M) \in (E)$

Để (H) tiếp xúc với (T) thì  $a^2 A^2-b^2 B^2-C^2=0$
Tiếp điểm M
$x_M = (a^2 (-A) C- \sqrt{-a^2 b^2 B^2 (a^2 A^2-b^2 B^2-C^2)})/(a^2 A^2-b^2 B^2) , B \neq 0 , a^2 A^2-b^2 B^2 \neq 0$
$y_M = (-A \sqrt{a^2 b^2 B^2 (-a^2 A^2+b^2 B^2+C^2)}-b^2 B^2 C)/(B (b^2 B^2-a^2 A^2)), B \neq 0, a^2 A^2-b^2 B^2 \neq 0$

Xem    http://goo.gl/w4Ftsf


Điều kiện tiếp xúc (T) với (H) là    $a^2 A^2-b^2 B^2-C^2=0$
Tiếp tuyến tại M thuộc (H) :  $A(x-x_M)+B(y-y_M)=0$  nên  $C=-(Ax_M+By_M)$
Thay vào điều kiện tiếp xúc , thu được
 $a^2 A^2-b^2 B^2-(Ax_M+By_M)^2=0$  giải phương trình này tìm quan hệ giữa A , B  , chọn A , B tương ứng .

 -Một cách vắn tắt :
Điểm $M(x_M,y_M) \in (H)$  phương trình tiếp tuyến với (H) tại M là
$x_Mx/a^2-y_My/b^2=1$

Lưu ý .
Nếu   $a^2 A^2-b^2 B^2-C^2<0$  thì (H) cắt (T)  tại 2 điểm phân biệt .
Nếu   $a^2 A^2-b^2 B^2-C^2>0$  thì (H) không cắt (T)  .



- Phương trình tiếp tuyến (T) với Hyperbola (H) song song đường thẳng (d) .
Cho (H) :  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(dạng chính tắc) , đường thẳng (d)   $Ax+By+C=0$

Phương trình tiếp tuyến (T)  //  (d)  là  : $Ax+By+m=0$
-Điều kiện tiếp xúc của đường thẳng (T)  $Ax+By+m=0$  và  Hyperbola (H)
Điều kiện tiếp xúc (T) với (H) là    $a^2 A^2-b^2 B^2-m^2=0$
Giải phương trình này tìm được m .

Lưu ý
*Tiếp tuyến song song với trục tung   Oy  là   : $x= \pm a$


- Phương trình tiếp tuyến (T) với Hyperbola (H) vuông góc đường thẳng (d) .
Cho (H) :  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(dạng chính tắc) , đường thẳng (d)   $Ax+By+C=0$

Phương trình tiếp tuyến (T)  _|_  (d)  là  : $Bx-Ay+m=0$
-Điều kiện tiếp xúc của đường thẳng (T)  $Bx-Ay+m=0$  và  Hyperbola (H)
Điều kiện tiếp xúc (T) với (H) là    $a^2 B^2-b^2 A^2-m^2=0$
Giải phương trình này tìm được m .

Lưu ý
*Tiếp tuyến vuông góc với trục hoành Ox  là  : $x= \pm a$


- Phương trình tiếp tuyến (T) với Hyperbola (H) đi qua điểm M1 không thuộc (H) .
Cho (H) :  $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(dạng chính tắc) , và điểm   $M_1(x_1,y_1) \notin (H)$

Phương trình tiếp tuyến (T) đi qua $M_1(x_1,y_1)$  là  : $A(x-x_1)+B(y-y_1)=0$
nên  $C=-(Ax_1+By_1)$

-Điều kiện tiếp xúc của đường thẳng (T)  $A(x-x_1)+B(y-y_1)=0$  và  Hyperbola (H)
 $a^2 A^2-b^2 B^2-C^2=0$
Thay vào điều kiện tiếp xúc , thu được
$a^2 A^2-b^2 B^2-(Ax_1+By_1)^2=0$

Giải phương trình này tìm được quan hệ giữa A , B . Chọn A và B tương ứng .

Với phương trình (H) chính tắc có tâm $I(x_0,y_0)$  khác O(0,0) 
$(x-x_0)^2/a^2-(y-y_0)^2/b^2=1$
Điều kiện tiếp xúc (T) : Ax+By+C=0 với (H) là   
 $a^2 A^2-b^2 B^2=(Ax_0+By_0+C)^2$
Xem    http://goo.gl/VkK9bl



--------------------------------------------------------------------------------------------------------------------------------------------------------


a. Viết phương trình tiếp tuyến với Hyperbola tại một điểm M thuộc Hyperbola .
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ .  Ví dụ .   Cho (H)  $x^2/25-y^2/9=1$  viết phương trình tiếp tuyến tại điểm  $M(5 \sqrt{2}, 3 )$

Kiểm tra
Ta có  a^2=25 , b^2 = 9
Nhập  x^2/25-y^2/9=1,x = 5sqrt(2), y = 3  , kết luận  $$M(5 \sqrt{2}, 3 )$ \in  (H)$
Xem   http://goo.gl/3DOusD
Tiếp tuyến tại M thuộc (H) :  $A(x-x_M)+B(y-y_M)=0$  nên  $C=-(Ax_M+By_M)$
Thay vào điều kiện tiếp xúc  :  $a^2 A^2-b^2 B^2-(Ax_M+By_M)^2=0$
 $25 A^2-9 B^2-(A.5 \sqrt{2}+B.3)^2=0$  giải phương trình này tìm quan hệ giữa A , B  , chọn A , B tương ứng .

Nhập   solve [25 A^2-9 B^2-(A*5 sqrt(2)+B*3)^2=0] for A  ta có  $A = -3 \sqrt{2} B/5$
Xem   http://goo.gl/c8LNzq
Chọn  A= 3 sqrt(2) , B = -5
Phương trình tiếp tuyến với (H) tại M là
$3 \sqrt{2}(x-5 \sqrt{2})-5(y-3)=0$

Nhập   x^2/25-y^2/9=1 , 3 \sqrt(2)(x-5 \sqrt(2))-5(y-3)=0
Xem   http://goo.gl/56oeJQ




Viết nhanh bằng phương pháp tách đôi tọa độ
Nhập  x^2/25-y^2/9=1 ,  5 sqrt(2)x/25- 3 y/9=1
Xem   http://goo.gl/pnZhmc

Giải bài toán bằng widget 
*Dùng  widget KHAO SAT HYPERBOLA  xét xem điểm $M(5 \sqrt{2}, 3 ) \in  (H)$ ?
Nhập  x^2/25-y^2/9=1,x = 5sqrt(2), y = 3  , kết luận  $M(5 \sqrt{2}, 3 ) \in  (H)$

*Dùng  widget  H10.II.3 T.T VOI HYPERBOLA TAI M




b. Viết phương trình tiếp tuyến với  Hyperbola song song với đường thẳng d .
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ 1.   Cho (H)  $x^2/25-y^2/4=1$  viết phương trình tiếp tuyến với (H) song song với đường thẳng d
2x - 4y + 1= 0

Phương trình tiếp tuyến (T)  //  (d)  là  : $2x-4y+m=0$
-Điều kiện tiếp xúc của đường thẳng (T)  $2x-4y+m=0$  và Hyperbola (H)
Điều kiện tiếp xúc (T) với (H) là    $a^2 A^2-b^2 B^2-m^2=0$  với  $a^2=25; b^2=4;A=2;B=-4$
Hay  $25*2^2-4*4^2-m^2=0$
Giải phương trình này tìm được m .
Nhập  25 *2^2-4* 4^2-m^2=0 , thu được m = 6  ;  m = -6
Xem    http://goo.gl/KVWGY9 


Vậy phương trình tiếp tuyến (T)  //  (d)  là  : $2x-4y+6=0$  ;  $2x-4y-6=0$
Kiểm tra
Nhập     x^2/25-y^2/4=1,2x-4y+6=0,2x-4y-6=0,2x-4y+1 = 0
Xem    http://goo.gl/QTzqb0



*Dùng widget  H10.II.3 TT VOI HYPERBOLA SSONG DTHANG


Kiểm tra
*Dùng  widget KHAO SAT HYPERBOLA 
Kiểm tra
Nhập     x^2/25-y^2/4=1,2x-4y+6=0,2x-4y-6=0,2x-4y+1 = 0


Ví dụ 2 .   Cho (H)  $(x-2)^2/10^2-(y+1)^2/6^2=1$  viết phương trình tiếp tuyến với (H) song song với đường thẳng d :  x + y + 10 = 0

*Dùng widget  H10.II.3 TT VOI HYPERBOLA SSONG DTHANG


Vậy phương trình tiếp tuyến (T)  //  (d)  là  : $x+y-9=0$  ;  $x+y+7=0$
Kiểm tra
Nhập     (x-2)^2/10^2-(y+1)^2/6^2=1 , x+y+10 = 0 , x+y-9=0 , x+y+7=0




c. Viết phương trình tiếp tuyến với Hyperbola vuông góc với đường thẳng d .
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ 1.   Cho (H)  $(x-2)^2/100-(y+1)^2/4=1$  viết phương trình tiếp tuyến với (H)  vuông góc với đường thẳng d  :   4x - y + 3 = 0

Phương trình tiếp tuyến (T)  _|_  (d)  là  : $x+4y+m=0$
-Điều kiện tiếp xúc của đường thẳng (T)  $x+4y+m=0$  và Hyperbola (H)

Điều kiện tiếp xúc (T) với (H) là    $a^2 B^2-b^2 A^2=(B_x0-Ay_0+m)^2=0$
với  $a^2=100; b^2=4;A=4;B=-1;x_0=2;y_0=-1$
Hay  $100*1^2-4*4^2=(-1*2-4*(-1)+m)^2$
Giải phương trình này tìm được m .
Nhập  100*1^2-4*4^2=(1*2+4*(-1)+m)^2  , thu được m = 8  ;  m = -4

Xem     http://goo.gl/fFs3RS
Vậy phương trình tiếp tuyến (T)  _|_  (d)  là  : $x+4y-4=0$  ;  $x+4y+8=0$




Kiểm tra
Nhập  (x-2)^2/100-(y+1)^2/4=1,4x - y + 3 = 0,x+4y-4=0,x+4y+8=0
Xem    http://goo.gl/nWzEfm

*Dùng  widget  H.10.II TT VOI HYPERBOLA VUONG GOC DTHANG



Phương trình tiếp tuyến (T)  _|_  (d)  là  : $x+4y-4=0$  ;  $x+4y+8=0$



d. Viết phương trình tiếp tuyến với Hyperbola đi qua  M1 không thuộc (H) .
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ 1.   Cho (H)  $(x-2)^2/16-(y+1)^2/9=1$  viết phương trình tiếp tuyến với (H) đi qua M1(10,5)
Kiểm tra
Nhập  (x-2)^2/16-(y+1)^2/9=1,x=10,y=5   kết luận  M1(10,5) không thuộc (H)


Phương trình tiếp tuyến (T) đi qua $M_1(x_1,y_1)$  là  : $A(x-x_1)+B(y-y_1)=0$
nên  $C=-(Ax_1+By_1)$
Cụ thể với M1(10,5) ta có $A(x-10)+B(y-5)=0$  hay  $Ax+By-10A-5B=0$  vậy $C=-(10A+5B)$


-Điều kiện tiếp xúc của đường thẳng (T)  $Ax+By-10A-5B=0$  và Hyperbola (H)

  $a^2 A^2-b^2 B^2=(Ax_0+By_0+C)^2$    trong đó   $C=-(Ax_1+By_1)$

$a^2A^2-b^2B^2=(Ax_0+By_0-(Ax_1+By_1))^2$    với  $C=-(10A+5B)$

$4^2A^2-3^2B^2=(A*2+B*(-1)-(10A+5B))^2$

Giải phương trình này tìm được quan hệ giữa A , B . Chọn A và B tương ứng .

Nhập   4^2A^2-3^2B^2=(A*2+B*(-1)-(10A+5B))^2
 ta có  { B = -4A/3 } ;  {B = -4A/5 }
Xem   http://goo.gl/s9U9BQ

Với  B = -4A/3 , chọn A = 3 , B = -4  phương trình tiếp tuyến (T)  $3x-4y-10=0$ . Tiếp tuyến trùng với đường tiệm cận của (H) [ loại ]
Với  B = -4A/5 , chọn A = 5 , B = -4  phương trình tiếp tuyến (T)  $5x-4y-30=0$ [ nhận ]



Kiểm tra
Nhập  (x-2)^2/16-(y+1)^2/9=1 , 3x-4y-10=0
Xem    http://goo.gl/U2fMse
Nhập  (x-2)^2/16-(y+1)^2/9=1 , 5x-4y-30=0
Xem   http://goo.gl/mwqon2


*Dùng  widget  H10.II.3 TT VOI HYPERBOLA QUA M1 NGOAI (E)


Với  A = 3 , B = -4  phương trình tiếp tuyến (T)  $3x-4y-10=0$ . Tiếp tuyến trùng với đường tiệm cận của (H) [ loại ]
Với  A = 5 , B = -4  phương trình tiếp tuyến (T)  $5x-4y-30=0$ [ nhận ]


Kiểm tra
*Dùng   widget KHAO SAT HYPERBOLA

Nhập     (x-2)^2/16-(y+1)^2/9=1 , 5x-4y-30=0




8.1.4   Một số dạng tiếp tuyến phức tạp với Hyperbola .

a. Tiếp tuyến với Hyperbola hợp với trục hoành một góc $\alpha^{\circ}$ .  
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ .  Khảo sát (H)  $(x-2)^2/25-(y-1)^2/9 = 1$  .
Viết phương trình tiếp tuyến với (C) hợp với trục hoành một góc $45^{\circ}$ .

Bước 1.  Tìm tâm I và bán trục của (H)
Cần nhớ rằng  $Ax+By+C=0  \Leftrightarrow  y = - A/B.x - C/B$  với  $B  \neq  0$
Hệ số góc của đường thẳng là  $k=tan \alpha = -A/B$
Tiếp tuyến (T) có dạng  $Ax+By+C=0$  với   $-A/B = tan \alpha$ , $m=-C/B$  có thể viết lại
 (T)  $x.tan \alpha  - y + m =0$
( A = $tan \alpha$ , B = -1 , C = m )

-Điều kiện tiếp xúc của đường thẳng (T)  $x. tan \alpha - y + m =0$  và Hyperbola (H)
$a^2 A^2-b^2 B^2=(Ax_0+By_0+C)^2$
$a^2.tan^2 \alpha-b^2.(-1)^2=(tan \alpha.x_0-1.y_0+m)^2$
Giải phương trình này thu được m .

Cụ thể với a = 5 , b = 3 , x0 = 2 , y0 = 1 ,  $\alpha = 45^{\circ}$
Nhập 
5^2*(tan(pi/4))^2-3^2.(-1)^2=(tan(pi/4)*2-1*1+m)^2
Thu được  m = -5 , m = 3

Viết phương trình tiếp tuyến
(T1)  x.tan45  - y - 5 = 0
(T2)  x.tan45  - y +3 = 0

Kiểm tra
Nhập  (x-2)^2/25-(y-1)^2/9 = 1 , x - y - 5 = 0 , x - y + 3 = 0


*Dùng  widget    H10.II.3 TT VOI HYPERBOLA HOP Ox GOC ALPHA



Kiểm tra
*Dùng   widget KHAO SAT HYPERBOLA
Nhập    (x-2)^2/25-(y-1)^2/9 = 1 , x - y - 5 = 0 , x - y + 3 = 0


b. Tiếp tuyến với Hyperbola hợp với trục tung một góc $\alpha^{\circ}$ .  
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ .  Khảo sát Hyperbola  (H)  $(x- 1/ \sqrt(3))^2/9-(y-1)^2/2 = 1$  .
Viết phương trình tiếp tuyến với (H) hợp với trục tung một góc $30^{\circ}$ .

Lưu ý : Tiếp tuyến (T) hợp với trục tung một góc $\alpha^{\circ}$  nghĩa là góc của (T) và trục hoành là
$90^{\circ}-\alpha^{\circ}$ .
(T)  $x.tan(90- \alpha ) - y + m =0$

Bài toán quy về viết phương trình tiếp tuyến với (H) hợp với trục hoành một góc $90^{\circ}-\alpha^{\circ}$
*Dùng  widget    H10.II.3 TT VOI HYPERBOLA HOP Ox GOC ALPHA



Vậy
(T1)  $x.tan60 - y + 5 =0$
(T2)  $x.tan60 - y - 5 =0$

Kiểm tra
*Dùng   widget KHAO SAT HYPERBOLA
Nhập    (x- 1/ sqrt(3))^2/9-(y-1)^2/2 = 1 , x*tan(60) - y + 5= 0 , x*tan(60) - y - 5 = 0



c. Tiếp tuyến với Hyperbola hợp với đường thẳng một góc $\alpha^{\circ}$ .  
Công cụ Giải toán trực tuyến W|A 
Nhập trực tiếp vào ô  Your Problem , Click Submit
Hoặc nhập trực tiếp  http://www.wolframalpha.com

Ví dụ .  Khảo sát Hyperbola (H)  $(x-2)^2/9-(y-1)^2/4 = 1$  .
Viết phương trình tiếp tuyến với (H) hợp với đường thẳng (d1)  x - 2y + 3 = 0 một góc $45^{\circ}$ .

Lưu ý :
+Góc hợp bởi 2 đường thẳng (d) và (d1) có hệ số góc tương ứng là k và k1 được tính bởi công thức
$tan[(d),(d1)]= \frac{k-k1}{1+k.k1}$
Hoặc
++Xác định pháp vector của đường thẳng cho trước
 (d1) $A1x+B1y+C1=0$ , ta có  $ \overrightarrow{n_{d1}}=(A1,B1)$
Phương trình đường thẳng cần tìm (d)  $Ax+By+C=0$ ,  có pháp vector là 
$ \overrightarrow{n_{d}}=(A,B)$


Tính góc giữa 2 pháp vector , giải phương trình
$cos(\overrightarrow{n_{d}},\overrightarrow{n_{d1}})=\frac{\overrightarrow{n{d}}.\overrightarrow{n_{d1}}}{||\overrightarrow{n_{d}}||.||\overrightarrow{n_{d1}}||}=
\frac{AA_1+BB_1}{\sqrt{A^2+B^2}.\sqrt{A_1^2+B_1^2}}=cos\alpha^{\circ}$
Tìm được quan hệ giữa A , B .
Chọn A và B tương ứng .

*Dùng  widget  H10.II.1 CHUM DTHANG HOP VOI (d) GOC ALPHA



+Chọn  { B = -1 , A = 3 }  thì (T1)  3x - y + m = 0
++Chọn  { B = 3 , A = 1 }  thì (T2)  x + 3y + m = 0 

 Trường hợp 1.  { B = -1 , A = 3 }  ta có   (T1)  3x - y + m = 0
*Dùng widget  H10.II.3 TT VOI HYPERBOLA SSONG DTHANG
Nhập  A = 3 , B = -1 , x0 = 2 , y0 =1 , a = 3 , b = 2
Ta có   $m = -5 - \sqrt{77} , m = -5 + \sqrt{77}$


Vậy phương trình tiếp tuyến với (H) là   3x - y -5 -sqrt(77) = 0 , 3x - y -5+sqrt(77) = 0
Kiểm tra
*Dùng   widget KHAO SAT HYPERBOLA
Nhập   (x-2)^2/9-(y-1)^2/4 = 1,x - 2y + 3 = 0,3x - y -5 -sqrt(77) = 0,3x - y -5+sqrt(77) = 0


 Trường hợp 2.  { B = 3 , A = 1 }  thì (T2)  x + 3y + m = 0
*Dùng widget  H10.II.3 TT VOI HYPERBOLA SSONG DTHANG
Nhập  A = 1 , B = 3 , x0 = 2 , y0 =1 , a = 3 , b = 2
Phương trinh không có nghiệm m .



--------------------------------------------------------------------------------------------------------------------------------------------------------



Trần hồng Cơ
28/06/2015

------------------------------------------------------------------------------------------- 

 Mục đích cuộc sống càng cao thì đời người càng giá trị.

 Geothe

1 nhận xét :

  1. As the academic year comes to a close, it's a great time to
    preview new tools for teaching students how to code with the
    Wolfram Language. Join us at this free online workshop to learn
    about the new Teacher's Editions of Programming Lab Explorations,
    auto-graded coding exercises, and Programming Lab modules
    designed to make lesson planning easy.

    New Resources for the Classroom: Virtual Workshop for Educators
    Tuesday, May 17, 4pm-5pm US EDT (8pm-9pm GMT)

    See details:
    http://url.wolfram.com/2k1A7PC/

    All are welcome

    Best regards,


    Jamie Peterson

    Trả lờiXóa

Cám ơn lời bình luận của các bạn .
Tôi sẽ xem và trả lời ngay khi có thể .


I will review and respond to your comments as soon as possible.,
Thank you .

Trần hồng Cơ .
Co.H.Tran
MMPC-VN
cohtran@mail.com
https://plus.google.com/+HongCoTranMMPC-VN/about

*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran