Giải toán trực tuyến W | A




Vẽ đồ thị trong Oxyz plot3D(f(x,y),x=..,y=..)
Vẽ đồ thị trong Oxy plot(f(x),x=..,y=..)
Đạo hàm derivative(f(x))
Tích phân Integrate(f(x))


Giải toán trực tuyến W|A

MW

Thứ Bảy, 14 tháng 11, 2015

GIẢI TOÁN PHỔ THÔNG BẰNG CÁC CÔNG CỤ TRỰC TUYẾN . Phần 10c . LƯỢNG GIÁC - Các bài toán khác về hàm số lượng giác


GIẢI TOÁN PHỔ THÔNG BẰNG CÁC CÔNG CỤ TRỰC TUYẾN .

Phần 10c . LƯỢNG GIÁC - Các bài toán khác về hàm số lượng giác  


DANH MỤC CÔNG CỤ GIẢI TOÁN TRỰC TUYẾN  MATHEMATICA  WOLFRAM | ALPHA .

Giới thiệu .

Bạn đọc truy cập vào đường dẫn  http://cohtrantmed.yolasite.com/widgets-tructuyen  để sử dụng các widgets giải toán trực tuyến W|A Mathematica theo chỉ mục trong danh sách dưới đây .

Những widgets này đã được tác giả sắp xếp theo từng môn học và cấp lớp theo ký hiệu như sau :

D : Đại số . Ví dụ  D8.1 widget dùng cho Đại số lớp 8 , mục 1 - Khai triển , rút gọn biểu thức đại số .
H : Hình học . Ví dụ  H12.3  widget dùng cho Hình học lớp 12 , mục 3 - Viết phương trình tham số của đường thẳng trong không gian .
G : Giải tích . Ví dụ : G11.7  widget dùng cho Giải tích lớp 11 , mục 7 - Tính đạo hàm cấp cao của hàm số
GI : Giải tích cao cấp I . Ví dụ GI.15  widget dùng cho Giải tích cao cấp I , mục 15 - Khai triển hàm số bằng đa thức TAYLOR
GII : Giải tích cao cấp II .


++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++


 ĐẠI SỐ 8

D8.1  Khai triển , rút gọn biểu thức đại số
D8.2  Rút gọn phân thức
D8.3  Phân tích thừa số
D8.4  Nhân 2 đa thức
D8.5  Khai triển tích số ( có thể dùng để khai triển Newton )
D8.6  Phân tích thừa số

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 10

D10.1 Giải phương trình nguyên Diophante
D10.2 Giải phương trình tuyệt đối
D10.3 Giải phương trình chứa tham số
D10.4  Giải phương trình đại số
D10.5  Giải phương trình từng bước
D10.6  Giải bất phương trình minh hoạ bằng đồ thị

D10.8  Tính giá trị biểu thức hàm số
D10.9  Giải bất phương trình đại số và minh hoạ bằng đồ thị
D10.10  Giải bất phương trình đại số - tìm miền nghiệm
D10.11  Giải phương trình đại số
D10.12  Giải phương trình vô tỷ
D10.13  Giải phương trình minh hoạ từng bước
D10.14  Giải phương trình dạng hàm ẩn
D10.15  Giải hệ thống phương trình tuyến tính , phi tuyến
D10.16  Giải hệ phương trình
D10.17  Vẽ miền nghiệm của bất phương trình đại số
D10.19  Tối ưu hoá hàm 2 biến với các ràng buộc
D10.20  Tìm giao điểm của đồ thị hàm số và trục hoành Ox , trục tung Oy

HÌNH HỌC 10

H10.1  Tính diện tích tam giác trong hệ toạ độ Oxy
H10.3  Khảo sát conic ( đường tròn , Ellipse , Parabola , Hyperbola )
H10.2  Tính khoảng cách từ 1 điểm đến đường thẳng trong Oxy



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 11

D11.1 Thuật chia Euclide dùng cho số và đa thức  ( HORNER )
D11.2  Tính tổng nghịch đảo của n số tự nhiên




D11.6  Khai triển nhị thức Newton


GIẢI TÍCH 11


G11.1  Tính gíá trị một chuỗi số  theo n
G11.2  Đa thức truy hồi
G11.3  Khảo sát tính hội tụ của chuỗi số
G11.4  Tính giới hạn của chuỗi số khi  $n \rightarrow  \infty$
G11.5  Tìm hàm số ngược của hàm số cho trước
G11.6  Tìm đạo hàm của hàm số hợp - giải thích
G11.7   Tính đạo hàm cấp cao của hàm số
G11.8   Tìm giới hạn của hàm số
G11.9   Tìm giới hạn của hàm số
G11.10  Tính đạo hàm hàm số có dạng U/V
G11.11  Tìm đạo hàm của hàm số cho trước
G11.12  Tìm đạo hàm của hàm số cho trước

G11+12.1   Tính đạo hàm ,tích phân , giới hạn , vẽ đồ thị


LƯỢNG GIÁC 11

L11.1   Giải phương trình lượng giác
L11.2   Giải phương trình lượng giác trên một đoạn
L11.3   Tìm chu kỳ của hàm số tuần hoàn
L11.4   Khai triển công thức lượng giác



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

ĐẠI SỐ 12

D12.1   Cấu trúc của số phức
D12.1   Giải phương trình mũ
D12.3   Giải  phương trình chứa tham số
D12.4   Giải  phương trình  bất kỳ  ( Bậc 2 , 3 , ... , mũ  , log , căn thức )
D12.5   Giải phương trình mũ



GIẢI TÍCH 12


G12.1  Vẽ đồ thị biểu diễn phương trình
G12.2    Khảo sát hàm số hữu tỷ
G12.3   Vẽ đồ thị trong toạ độ cực (Polar)
G12.4    Tìm cực trị của hàm số
G12.5    Vẽ đồ thị hàm số 2D
G12.6   Tìm đạo hàm cấp 2 của hàm số
G12.7    Vẽ nhiều hàm số - Basic plot. To plot two or more functions, enter {f1(x), f2(x),...}
G12.8    Tìm điểm uốn của hàm số cho trước
G12.9    Tìm nghiệm của các phương trình  y = 0 , y ' = 0 ,  y " = 0
G12.10    Tính tích phân bất định
G12.11    Tính tích phân bất định minh hoạ từng bước
G12.12   Tính tích phân bất định minh hoạ từng bước
G12.13   Tìm đường tiệm cận của hàm số
G12.14   Tính diện tích hình phẳng giới hạn bởi 2 đường cong (C1) , (C2)
G12.15  Tìm giao điểm của hàm số đa thức và trục hoành Ox - Vẽ đồ thị .
G12.16    Tính thể tích vật thể tròn xoay giới hạn bởi (C1) , (C2)
G12.17    Vẽ đồ thị hàm số ( có đường tiệm cận )
G12.18   Vẽ đồ thị 2D , 3D
G12.19   Tìm hoành độ giao điểm giữa 2 đường cong (C1) , (C2)
G12.20    Vẽ đường cong tham số 3D
G12.21    Tính diện tich mặt tròn xoay
G12.22    Tích thể tích vật tròn xoay  (C) , trục  Ox , x =a , x= b
G12.23    Thể tích vật tròn xoay
G12.24    Tích thể tích vật tròn xoay (C1) , (C2) , trục OX , x = a , x = b
G12.25    Khảo sát hàm số đơn giản
G12.26    Tìm cực trị của hàm số
G12.27    Tìm nguyên hàm của hàm số
G12.28    Tính tích phân xác định


HÌNH HỌC 12


H12.1  Tính khoảng cách 2 điểm trong 2D , 3D
H12.2   Viết phương trình mặt phẳng qua 3 điểm trong không gian
H12.3  Viết phương trình tham số của đường thẳng trong không gian
H12.4   Tìm công thức thể tích , diện tích hình không gian
H12.5   Vẽ đồ thị 2D , mặt 3D
H12.6    Tích có hướng 2 vector



++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

GIẢI TÍCH CAO CẤP

GI.1    Vẽ đồ thị , mặt 3D
GI.2   Vẽ đồ thị , mặt  3D
GI.3    Tích phân 2 lớp
GI.5    Tích phân kép
GI.6    Tích phân bội 3
GI.7    Tích phân bội 3
GI.8    Tích phân suy rộng
GI.9    Chuỗi và dãy số
GI.10    Các bài toán cơ bản trong vi  tích phân
GI.11     Vẽ hàm từng khúc ( piecewise ) - dùng để xét tính liên tục của hàm số
GI.12    Tính đạo hàm và tích phân một hàm số cho trước
GI.13     Vẽ đồ thị hàm số trong hệ toạ độ cực
GI.14     Tính đạo hàm riêng
GI.15    Khai triển hàm số bằng đa thức TAYLOR
GI.16    Tính tổng chuỗi số  n = 1...$\infty$
GI.17     Vẽ  đồ thị  3 hàm số

++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

Bài viết sau đây mô tả các khái niệm toán học và hướng dẫn tính toán chi tiết bằng công cụ trực tuyến , bạn đọc có thể tham khảo những nội dung chính yếu được đề cập đến trong giáo trình toán phổ thông  cùng với các ví dụ minh họa  .

Một số website hữu ích phục vụ cho việc giảng dạy và học tập môn toán :

http://quickmath.com/
http://analyzemath.com/
http://www.intmath.com/
http://www.mathportal.org
https://www.mathway.com/
https://www.symbolab.com/
http://www.graphsketch.com/
http://www.meta-calculator.com/online/?home
http://cohtrantmed.yolasite.com/widgets-tructuyen



10.  LƯỢNG GIÁC - Công thức - hàm số - phương trình và bất phương trình lượng giác

10.5  Các bài toán khác về hàm số lượng giác .

10.5.1  Khảo sát hàm số lượng giác .

1. Vẽ đồ thị hàm số lượng giác .

Ví dụ  . Vẽ đồ thị hàm số lượng giác  $y=sin2x ; y = tan(x/3)$
Lập bảng giá trị cho các hàm số , vẽ đồ thị .
Lưu ý :
Với  $y=sin2x $  ta chọn chu kỳ $T =\pi$
Với  $y = tan(x/3)$  ta chọn chu kỳ $T =3\pi$ 

*Dùng  widget  L11.I.1 VE DO THI HAM SO LUONG GIAC





2.  Tìm tập xác định của hàm số lượng giác .

Ví dụ  .  Tìm tập xác định của  $y =tanx+cotx$  ; $y=(1+cosx)/(1+sinx)$
Lưu ý :
Với   $y =tanx+cotx$  điều kiện là  $x \neq \pi/2+k\pi ; x = k\pi$
Với   $y=(1+cosx)/(1+sinx)$  điều kiện là  $(1+sinx) \neq 0 $

*Dùng  widget  D10.I.2 TAP XAC DINH CUA HAM SO



3.  Tính tăng - giảm của hàm số lượng giác .

 Ví dụ  .  Xét khoảng tăng của hàm số  $y=sin(2x/3)$  ;  $y=1-cos3x$
Lưu ý :
Với   $y=sin(2x/3)$ tăng khi  $0+k2\pi   \leq 2x/3 \leq \pi/2+k2\pi$ hoặc $3\pi/2+k2\pi   \leq 2x/3 \leq  2\pi+k2\pi$
Với  $y=1-cos3x$  tăng khi  $0+k2\pi  \leq 3x \leq \pi+k2\pi$

*Dùng  widget  G12.I.1 TIM KHOANG TANG GIAM CUA HAM SO



4.  Tính chẵn - lẻ của hàm số lượng giác .

Ví dụ  .  Xét tính chẵn lẻ của  $y= xcosx$  ;  $y=sinx/x$
Lưu ý :
Với  $y= xcosx$ dùng tính chất cung ĐỐI : $cos(-x) =cosx$
Với  $y= y=sinx/x$ dùng tính chất cung ĐỐI : $sin(-x) =-sinx$

*Dùng  widget  D10.I.2 XET TINH CHAN LE CUA HAM SO




5. Tìm chu kỳ của hàm số lượng giác .

Ví dụ  .  Tìm chu kỳ của hàm số  $y=sinx-cos2x.tan(x/2)$  ;  $y=sin(\pi/2+4/(3x))+cos(\pi-x/5)$
Lưu ý :
Với   $y=sinx-cos2x.tan(x/2)$  ta cần tìm k.h,m như sau
$sinx=sin(x+T)\Leftrightarrow x+k2\pi = x+T \Leftrightarrow T=k2\pi $
$cos2x=cos2(x+T)\Leftrightarrow 2x+h2\pi = 2x+2T \Leftrightarrow T=h\pi$
$tan(x/2)=tan[(x+T)/2]\Leftrightarrow x/2+m\pi=x/2+T/2 \Leftrightarrow T=m2\pi$
Do đó  $ T=k2\pi = h\pi = m2\pi$  hay  $2k=h=2m$  chọn $h$ nguyên dương nhỏ nhất , ta có $h=2$

Với    $y=sin(\pi/2+4/(3x))+cos(\pi-x/5)$    hàm số không có chu kỳ

*Dùng  widget  L11.I.1 TIM CHU KY CUA HAM SO




6. Tính giá trị lớn nhất - nhỏ nhất của hàm số lượng giác .

Ví dụ  .  Tìm giá trị lớn nhất - nhỏ nhất của  $y=2sinx-5$  ;  $y=\sqrt{2sinx+3}$  ;  $y=cos2x-2sinx+3$
$y=sinx+cosx+1$

Lưu ý :
Với   $y=2sinx-5$  ;  $y=\sqrt{2sinx+3}$  dùng tính chất hàm số sin , ta có  $-1 \leq sinx \leq 1$
Với   $y=cos2x-2sinx+3$  biến đổi thành  $y=1-2sin^2x-2sinx+3=-2sin^2x-2sinx+4$
đặt  $t=sinx ; -1 \leq t \leq 1$  khảo sát hàm số bậc 2 theo t :  $y=-2t^2-2t+4$
Với  $y=sinx+cosx+1$ chuyển vế $sinx+cosx+1-y=0$  xét điều kiện có nghiệm của phương trình cổ điển
$a^2+b^2-c^2 \geq 0 \Leftrightarrow 1^2+1^2-(1-y)^2  \geq 0 $


*Dùng  widget  L11.I.1 TIM MAX-MIN CUA HAM SO LUONG GIAC







10.5.2  Khảo sát hàm số lượng giác ngược .

1. Vẽ đồ thị hàm số lượng giác ngược .

Ví dụ  . Vẽ đồ thị hàm số  $y=arcsin(x/4) $

*Dùng  widget  L11.I.1 VE DO THI HAM SO LUONG GIAC



2.  Tìm tập xác định của hàm số lượng giác ngược .

Ví dụ  .    Tìm tập xác định của  $y =arcsin(\pi/3-2x)$  ; $y=arctan(3x+\pi)$

*Dùng  widget  D10.I.2 TAP XAC DINH CUA HAM SO



3.  Tính tăng - giảm của hàm số lượng giác ngược .

Ví dụ  .   Xét khoảng tăng của hàm số  $y=arcsin(2x/3)$  ;  $y=1+2arccos(3x/4)$

*Dùng  widget  G12.I.1 TIM KHOANG TANG GIAM CUA HAM SO




4.  Tính chẵn - lẻ của hàm số lượng giác ngược .

Ví dụ  .  Xét tính chẵn lẻ của  $y=arctan(2x)$  ;  $y=x.arcsinx$

*Dùng  widget  D10.I.2 XET TINH CHAN LE CUA HAM SO



5. Tìm chu kỳ của hàm số lượng giác ngược .

Ví dụ  .   Tìm chu kỳ của hàm số   $y=arccosx$

*Dùng  widget  L11.I.1 TIM CHU KY CUA HAM SO



6. Tính giá trị lớn nhất - nhỏ nhất của hàm số lượng giác ngược .

Ví dụ  .  Tìm giá trị lớn nhất - nhỏ nhất của  $y=2arcsinx+1$  ;  $y=arccos2x-2arcsinx+1$


*Dùng  widget  L11.I.1 TIM MAX-MIN CUA HAM SO LUONG GIAC




Trần hồng Cơ
Ngày 14/11/2015



-------------------------------------------------------------------------------------------

Trên đời không gì vĩ đại bằng con người.

Trong con người không gì vĩ đại bằng trí tuệ.

A.Hamillton

Không có nhận xét nào :

Đăng nhận xét

Cám ơn lời bình luận của các bạn .
Tôi sẽ xem và trả lời ngay khi có thể .


I will review and respond to your comments as soon as possible.,
Thank you .

Trần hồng Cơ .
Co.H.Tran
MMPC-VN
cohtran@mail.com
https://plus.google.com/+HongCoTranMMPC-VN/about

*******

Blog Toán Cơ trích đăng các thông tin khoa học tự nhiên của tác giả và nhiều nguồn tham khảo trên Internet .
Blog cũng là nơi chia sẻ các suy nghĩ , ý tưởng về nhiều lĩnh vực khoa học khác nhau .


Chia xẻ

Bài viết được xem nhiều trong tuần

CÁC BÀI VIẾT MỚI VỀ CHỦ ĐỀ TOÁN HỌC

Danh sách Blog

Gặp Cơ tại Researchgate.net

Co Tran